Skip to main content
Log in

Generalized Bose–Einstein Condensation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Generalized Bose–Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We review examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically occupied. We begin by discussing Type I or “normal” BEC into a single state for an isotropic harmonic oscillator potential. Other geometries and external potentials are then considered: the “channel” potential (harmonic in one dimension and hard-wall in the other), which displays Type II, the “cigar trap” (anisotropic harmonic potential), and the “Casimir prism” (an elongated box), the latter two having Type III condensations. General box geometries are considered in an appendix. We particularly focus on the cigar trap, which Van Druten and Ketterle first showed had a two-step condensation: a GBEC into a band of states at a temperature T c and another “one-dimensional” transition at a lower temperature T 1 into the ground state. In a thermodynamic limit in which the ratio of the dimensions of the anisotropic harmonic trap is kept fixed, T 1 merges with the upper transition, which then becomes a normal BEC. However, in the thermodynamic limit of Beau and Zagrebnov, in which the ratio of the boundary lengths increases exponentially, T 1 becomes fixed at the temperature of a true Type I phase transition. The effects of interactions on GBEC are discussed and we show that there is evidence that Type III condensation may have been observed in the cigar trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ketterle, When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  ADS  Google Scholar 

  2. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  ADS  Google Scholar 

  3. A.J. Leggett, Quantum Liquids (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  4. A.J. Leggett, Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001)

    Article  ADS  Google Scholar 

  5. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  6. A. Einstein, Quanten theorie des einatomigen idealen gases. Sitz.ber. Kgl. Preuss. Akad. Wiss. 1924, 261–267 (1924); 1925, 3-14, (1925)

    Google Scholar 

  7. F. London, Superfluids. Macroscopic Theory of Superfluid Helium, vol. I (Dover, New York, 1954)

    MATH  Google Scholar 

  8. R.M. Ziff, G.E. Uhlenbeck, M. Kac, The ideal Bose–Einstein gas, revisited. Phys. Rep. 32C, 169–248 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. M. Girardeau, Simple and generalized condensation in many-boson systems. Phys. Fluids 5, 1468–1478 (1962)

    Article  MATH  ADS  Google Scholar 

  11. M. Girardeau, Off-diagonal long-range order and generalized Bose condensation. J. Math. Phys. 6, 1083–1098 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Luban, Statistical mechanics of a nonideal boson gas: pair Hamiltonian model. Phys. Rev. 128, 965–987 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. H.B.G. Casimir, On Bose–Einstein condensation, in Fundamental Problems in Statistical Mechanics III, ed. by E.G.D. Cohen (1968), pp. 188–196

    Google Scholar 

  14. J.J. Rehr, N.D. Mermin, Condensation of the rotating two-dimensional ideal Bose gas. Phys. Rev. B 1, 3160–3162 (1970)

    Article  ADS  Google Scholar 

  15. P. Nozières, D. Saint James, Particle vs. pair condensation in attractive Bose liquids. J. Phys. 43, 1133–1148 (1982)

    Article  Google Scholar 

  16. P. Nozières, Some comments of Bose–Einstein condensation, in Bose–Einstein Condensation, ed. by A. Griffini, D.W. Snoke, S. Stringari (Cambridge University Press, Cambridge, 1995), p. 15

    Chapter  Google Scholar 

  17. M. Van den Berg, On the free boson gas in a weak external potential. Phys. Lett. A 78, 88–90 (1980)

    Article  ADS  Google Scholar 

  18. M. Van den Berg, J.T. Lewis, On the free boson gas in a weak external potential. Commun. Math. Phys. 81, 475–494 (1981)

    Article  ADS  Google Scholar 

  19. M. Van den Berg, On Bose condensation into an infinite number of low-lying levels. J. Math. Phys. 23, 1159–1161 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. van den Berg, J.T. Lewis, On generalized condensation in the free boson gas. Physica A 110, 550–564 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.V. Pulé, The free boson gas in a weak external potential. J. Math. Phys. 24, 138–142 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. van den Berg, On condensation in the free-boson gas and the spectrum of the Laplacian. J. Stat. Phys. 31, 623–637 (1983)

    Article  ADS  Google Scholar 

  23. M. van den Berg, J.T. Lewis, P. de Smedt, Condensation in the imperfect boson gas. J. Stat. Phys. 37, 697–707 (1984)

    Article  ADS  Google Scholar 

  24. M. van den Berg, J.T. Lewis, J.V. Pulé, A general theory of Bose–Einstein condensation. Helv. Phys. Acta 59, 1271–1288 (1986)

    MathSciNet  Google Scholar 

  25. M. van den Berg, J.T. Lewis, M. Lunn, On the general theory of Bose–Einstein condensation and the state of the free boson gas. Helv. Phys. Acta 59, 1289–1310 (1986)

    MathSciNet  Google Scholar 

  26. J.-B. Bru, V.A. Zagrebnov, Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas. J. Phys. A, Math. Gen. 31, 9377–9404 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. J.-B. Bru, V.A. Zagrebnov, Quantum interpretation of thermodynamic behaviour of the Bogoliubov weakly imperfect Bose gas. Phys. Lett. A 247, 37–41 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. J.-B. Bru, V.A. Zagrebnov, Exactly soluble model with two kinds of Bose–Einstein condensations. Physica A 268, 309–325 (1999)

    Article  Google Scholar 

  29. J.-B. Bru, V.A. Zagrebnov, On condensations in the Bogoliubov weakly imperfect Bose gas. J. Stat. Phys. 99, 1297–1338 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. J.-B. Bru, V.A. Zagrebnov, A model with coexistence of two kinds of Bose condensation. J. Phys. A, Math. Gen. 33, 449–464 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. J.V. Pulé, V.A. Zagrebnov, The canonical perfect Bose gas in Casimir boxes. J. Math. Phys. 45, 3565–3583 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. J.V. Pulé, A.F. Verbeure, V.A. Zagrebnov, On solvable boson models. J. Math. Phys. 49, 043302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Beau, V.A. Zagrebnov, The second critical density and anisotropic generalised condensation. Condens. Matter Phys. 13, 23003 (2010)

    Article  Google Scholar 

  34. M. Beau, Scaling approach to existence of long cycles in Casimir boxes. J. Phys. A, Math. Theor. 42, 235204 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. T.-L. Ho, S.K. Yip, Fragmented and single condensate ground states of spin-1 Bose gas. Phys. Rev. Lett. 84, 4031–4034 (2000)

    Article  ADS  Google Scholar 

  36. N.J. van Druten, W. Ketterle, Two-step condensation of the ideal Bose gas in highly anisotropic traps. Phys. Rev. Lett. 79, 549–552 (1997)

    Article  ADS  Google Scholar 

  37. E.B. Sonin, Quantization of the magnetic flux of superconducting rings and Bose condensation. Sov. Phys. JETP 29, 520–525 (1969)

    ADS  Google Scholar 

  38. K. Damle, T. Senthil, S.N. Majumdar, S. Sachdev, Phase transition of a Bose gas in a harmonic potential. Europhys. Lett. 36, 7–12 (1996)

    Article  ADS  Google Scholar 

  39. W.J. Mullin, Bose–Einstein condensation in a harmonic potential. J. Low Temp. Phys. 106, 615–641 (1997)

    Article  ADS  Google Scholar 

  40. J.E. Robinson, Note of the Bose–Einstein integral functions. Phys. Rev. 83, 678–679 (1951)

    Article  MATH  ADS  Google Scholar 

  41. M.R. Andrews, C.G. Townsend, H.J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Observation of interference between two Bose condensates. Science 275, 637–641 (1997)

    Article  Google Scholar 

  42. F. Laloë, W.J. Mullin, Nonlocal quantum effects with Bose–Einstein condensates. Phys. Rev. Lett. 99, 150401 (2007)

    Article  ADS  Google Scholar 

  43. O.E. Alon, L.S. Cederbaum, Pathway from condensation via fragmentation to fermionization of cold bosonic systems. Phys. Rev. Lett. 95, 140402 (2005)

    Article  ADS  Google Scholar 

  44. W. Ketterle, N.J. van Druten, Bose–Einstein condensation of a finite number of particles trapped in one or three dimensions. Phys. Rev. A 54, 656–660 (1996)

    Article  ADS  Google Scholar 

  45. G. Baym, C. Pethick, Ground-state properties of magnetically trapped Bose-condensed rubidium gas. Phys. Rev. Lett. 76, 6–9 (1996)

    Article  ADS  Google Scholar 

  46. M. Schröder, On the Bose gas with local mean-field interaction. J. Stat. Phys. 58, 1151–1163 (1990)

    Article  ADS  Google Scholar 

  47. T. Michoel, A. Verbeure, Nonextensive Bose–Einstein condensation model. J. Math. Phys. 40, 1268–1279 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. W. Deng, Multi-step Bose–Einstein condensation of trapped ideal Bose gases. Phys. Lett. A 260, 78–85 (1999)

    Article  ADS  Google Scholar 

  49. K. Shiojawa, On multistep Bose–Einstein condensation in anisotropic traps. J. Phys. A, Math. Gen. 33, 487–506 (2000)

    Article  ADS  Google Scholar 

  50. P. Hohenberg, Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383 (1967)

    Article  ADS  Google Scholar 

  51. C.V. Chester, in Lectures in Theoretical Physics, vol. IIB, ed. by K.T. Mahanthappa (Gordon & Breach, New York, 1968), p. 253

    Google Scholar 

  52. O. Penrose, L. Onsager, Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)

    Article  MATH  ADS  Google Scholar 

  53. W.J. Mullin, M. Holzmann, F. Laloë, Validity of the Hohenberg theorem for a generalized Bose–Einstein condensation in two dimensions. J. Low Temp. Phys. 121, 263–268 (2000)

    Article  Google Scholar 

  54. J.P. Fernandez, W.J. Mullin, Absence of fragmentation in two-dimensional Bose–Einstein condensation. J. Low Temp. Phys. 138, 687–692 (2005)

    Article  ADS  Google Scholar 

  55. I. Bouchoule, N.J. van Druten, C.I. Westbrook, Atom chips and one-dimensional Bose gases. arXiv:0901.3303v2 (2009)

  56. J. Armijo, T. Hacqmin, K. Kheruntsyan, I. Bouchoule, Mapping out the quasicondensate transition through the dimensional crossover from one to three dimensions. Phys. Rev. A 83, 021605(R) (2011)

    Article  ADS  Google Scholar 

  57. E. Lieb, W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. E. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum. Phys. Rev. 130, 1616–1624 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. C.N. Yang, C.P. Yang, Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys. 10, 1115 (1969)

    Article  MATH  ADS  Google Scholar 

  60. P.J. Forrester, N.E. Frankel, T.M. Garoni, N.S. Witte, Finite one-dimensional impenetrable Bose systems: occupation numbers. Phys. Rev. A 67, 043607 (2003)

    Article  ADS  Google Scholar 

  61. D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 30 (2000)

    Article  Google Scholar 

  62. K. Nho, D. Blume, Superfluidity of mesoscopic Bose gases under varying confinements. Phys. Rev. Lett. 95, 193601 (2005)

    Article  ADS  Google Scholar 

  63. E. Witkowska, P. Deuar, M. Gajda, K. Rzążewski, Solitons as the early stage of quasicondensate formation during evaporative cooling. Phys. Rev. Lett. 106, 135301 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Mullin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullin, W.J., Sakhel, A.R. Generalized Bose–Einstein Condensation. J Low Temp Phys 166, 125–150 (2012). https://doi.org/10.1007/s10909-011-0412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-011-0412-7

Keywords

Navigation