Skip to main content
Log in

Phase diagrams and thermodynamic study of the mixed spin-1/2 and spin-3 Blume-Capel model: renormalization group theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we study the Blume-Capel model of a mixed spin system (\(\sigma =1/2\) and \(S=3\)) in a hypercubic lattice of dimension d. For this purpose, we choose to work with the renormalization group method, namely the Migdal-Kadanoff technique. The results show that there is a critical dimension \(d_{c}\approx 2.14\), above which the critical behavior of the system changes; therefore, we can distinguish two possible cases, one when \(d<d_{c}\) and the other when \(d\ge d_{c}\). Considering \(d=2\) \(\left( d<d_{c}\right)\) and \(d=3\) \(\left( d\ge d_{c}\right)\), we identify the stable and unstable fixed points where there is no tricritical point, determine the critical exponents and verify their universal behavior. For the same dimensions, we plot the phase diagrams in the \(\left( \Delta _{2}/J, 1/J\right)\) and \(\left( \Delta _{2}, J\right)\) planes with a second order transition. Furthermore, we show that at very low temperatures, and by using free energy derivation, three first-order phase transitions can take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

No data were used for the research described in this manuscript, and all of the material is owned by the authors and/or no permissions are required.

References

  1. M. Mansuripur, J. Appl. Phys. 61, 1580 (1987)

    Article  ADS  Google Scholar 

  2. J. Strečka, Physica A. 360, 379 (2006)

    Article  ADS  Google Scholar 

  3. O. Kahn, In: Molecular Magnetism: From Molecular Assemblies to the Devices Coronado, E., Delhaès, P., Gatteschi, D., Miller, J. (eds.), Springer, Berlin (1996)

  4. O. Kahn, Molecular Magnetism (VCH, New York, 1993)

    Google Scholar 

  5. G.A. Prinz, Science. 282, 1660 (1998)

    Article  Google Scholar 

  6. M. Mansuripur, J. Appl. Phys. 61, 1580 (1987)

    Article  ADS  Google Scholar 

  7. M. Drillon, E. Coronado, D. Beltran, R. Georges, Chem. Phys. 79, 449 (1983)

    Article  Google Scholar 

  8. C. Mathonière, C.J. Nuttall, S.G. Carling, P. Day, Inorg. Chem. 35, 1201 (1996)

    Article  Google Scholar 

  9. E. Ising, Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  10. M. Blume, Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  11. H.W. Capel, Physica. 32, 966 (1966)

    Article  ADS  Google Scholar 

  12. H. Ez-Zahraouy, A. Kassou-Ou-Ali, Phys. Rev. B. 69, 064415 (2004)

    Article  ADS  Google Scholar 

  13. A. Malakis, A.N. Berker, N.G. Fytas, T. Papakonstantinou, Phys. Rev. E. 85, 061106 (2012)

    Article  ADS  Google Scholar 

  14. J. Zierenberg, N.G. Fytas, W. Janke, Phys. Rev. E. 91, 032126 (2015)

    Article  ADS  Google Scholar 

  15. J. Zierenberg, N.G. Fytas, M. Weigel, W. Janke, A. Malakis, Eur. Phys. J. Special Topics. 226, 789 (2017)

    Article  ADS  Google Scholar 

  16. Y. Yüksel, Ü. Akıncı, H. Polat, Phys. A. 391, 2819 (2012)

    Article  Google Scholar 

  17. A.N. Berker, M. Wortis, Phys. Rev. B. 14, 4946 (1976)

    Article  ADS  Google Scholar 

  18. S.M. de Oliveira, P.M.C. de Oliveira, and F.C. de Sa Barreto. J. Stat. Phys. 78, 1619 (1995)

  19. K.G. Wilson, Phys. Rev. D. 3, 1818 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  20. A.A. Migdal, Zh. Eksp. Teor. Fiz. 69, 1457 (1975)

    Google Scholar 

  21. L.P. Kadanoff, Ann. Phys. 100, 359 (1976)

    Article  ADS  Google Scholar 

  22. N. Benayad, Z. Phys. B-Condens. Matter. 81, 99 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Benayad, J. Zittartz, Z. Phys. Cond. B-Matt. 81, 107 (1990)

    Article  ADS  Google Scholar 

  24. M. Madani, A. Gaye, M. El Bouziani, A. Alrajhi, Physica. A. 437, 396 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. El Bouziani, M. Madani, A. Gaye, A. Alrajhi, W. J., Cond. Matt. Phys. 6, 109 (2016)

  26. H. Zahir, A. Hasnaoui, R. Aharrouch, M. Madani, A. Lafhal, N. Hachem, M. El Bouziani, Int. J. Theor. Phys. 60, 1 (2021)

    Article  Google Scholar 

  27. K. El Kihel, H. Saadi, R. Aharrouch, A. El Antari, N. Hachem, M. Madani, and M. El Bouziani. Multidiscipline Modeling in Materials and Structures. (2021)

  28. M. Bourass, A. Zradba, S. Zouhair, A. El Antari, M. El Bouziani, M. Madani, A. Alrajhi, J. Supercond. Nov. Magn. 31, 541 (2018)

    Article  Google Scholar 

  29. A. El Antari, H. Zahir, A. Hasnaoui, N. Hachem, A. Alrajhi, M. Madani, M. El Bouziani, Int. J. Theor. Phys. 57, 2330 (2018)

    Article  Google Scholar 

  30. A. El Antari, H. Saadi, Y. Hajaj, A. Zradba, M. Madani, N. Hachem, M. El Bouziani, Physica. A. 578, 126113 (2021)

    Article  Google Scholar 

  31. A. Lafhal, N. Hachem, H. Zahir, M. El Bouziani, M. Madani, A. Alrajhi, J. Stat. Phys. 174, 40 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Bakchich, M. El Bouziani, Phys. Rev. B. 56, 11155 (1997)

    Article  ADS  Google Scholar 

  33. S. Boettcher, Phys. Rev. Lett. 95, 197205 (2005)

    Article  ADS  Google Scholar 

  34. M. Demirtaş, A. Tuncer, A.N. Berker, Phys. Rev. E. 92, 022136 (2015)

    Article  ADS  Google Scholar 

  35. A. Maiorano, G. Parisi, Proc. Natl. Acad. Sci. USA 115, 5129 (2018)

    Article  ADS  Google Scholar 

  36. B. Atalay, A.N. Berker, Phys. Rev. E. 98, 042125 (2018)

    Article  ADS  Google Scholar 

  37. A. Dakhama, M. Azhari, N. Benayad, J. Phys. Commun. 2, 065011 (2018)

    Article  Google Scholar 

  38. M. Azhari, U. Yu, Phys. Rev. E. 102, 042113 (2020)

    Article  ADS  Google Scholar 

  39. D. Fouejio, C. Noupa, Physica B: Condens. Matter. 626, 413489 (2022)

    Article  Google Scholar 

  40. N. Benayad, J. Zittartz, Z. Phys. Cond. B-Matt. 81, 107 (1990)

    Article  ADS  Google Scholar 

  41. M. Madani, A. Gaye, M. El Bouziani, A. Alrajhi, Physica. A. 437, 396 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. El Bouziani, M. Madani, A. Gaye, A. Alrajhi, W.J. Cond, Matt. Phys. 6, 109 (2016)

    Google Scholar 

  43. R. Lipowsky, H. Wagner, Z. Phys. B-Condens. Matter. 42, 355 (1981)

    Article  ADS  Google Scholar 

  44. R. Lipowsky, Z. Phys. B-Condens. Matter. 51, 165 (1983)

    Article  ADS  Google Scholar 

  45. B. Boechat, R.A. Filgueiras, C. Cordeiro, N.S. Branco, Physica. A. 304, 429 (2002)

    Article  ADS  Google Scholar 

  46. A. Bakchich, A. Bassir, A. Benyoussef, Physica. A. 195, 188 (1993)

    Article  ADS  Google Scholar 

  47. N. Hachem, A. Lafhal, H. Zahir, M. El Bouziani, M. Madani, A. Alrajhi, Superlatt. Microstr. 111, 927 (2017)

    Article  ADS  Google Scholar 

  48. M. Hasenbusch, Phys. Rev. B. 82, 174433 (2010)

    Article  ADS  Google Scholar 

  49. A. Benyoussef, N. Boccara, M. El Bouziani, Phys. Rev. B. 34, 7775 (1986)

    Article  ADS  Google Scholar 

  50. R. Lipowsky, H. Wagner, Z. Phys. B-Condes. Matter. 42, 355 (1981)

    Article  ADS  Google Scholar 

  51. B. Nienhuis, M. Nauenberg, Phys. Rev. Lett. 35, 477 (1975)

    Article  ADS  Google Scholar 

  52. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  53. L. Bahmad, M.R. Benayad, A. Benyoussef, A. El Kenz, Acta Phys. Pol. A 119, 740 (2011)

    Article  ADS  Google Scholar 

  54. W. Hoston, A.N. Berker, Phys. Rev. Lett. 67, 1027 (1991)

    Article  ADS  Google Scholar 

  55. G.M. Buendía, J.A. Liendo, J. Phys. Condens. Matter. 9, 5439 (1997)

    Article  ADS  Google Scholar 

  56. H. Zahir, T. Bahlagui, A. El Kenz, M. El Bouziani, A. Benyoussef, A. Hasnaoui, K. Sbiaai, J. Supercond. Nov. Magn. 32, 963 (2019)

    Article  Google Scholar 

  57. T. Kaneyoshi, Physica. A. 205, 677 (1994)

    Article  ADS  Google Scholar 

  58. J. Li, G. Wei, A. Du, Physica. B. 368, 121 (2005)

    Article  ADS  Google Scholar 

  59. E. Albayrak, A. Yigit, Phys. Stat. Sol. (b). 242, 1510 (2005)

    Article  ADS  Google Scholar 

  60. C.N. Yang, Phys. Rev. 85, 808 (1952)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Bouziani.

Appendix

Appendix

The expressions of \(F_{i,j}\) obtained using the Eqs. (3), (4) and (5) are given by:

  • For \(\displaystyle \left( \sigma _{2}, S_{1}\right) =\left\{ \left( \frac{1}{2}, 0\right) ; \left( -\frac{1}{2}, 0\right) \right\}\)

    $$\begin{aligned} F_{\frac{1}{2},0}= \, & {} 2+2\cdot e^{\displaystyle 2\frac{\Delta _{2}}{z}+2\frac{\Delta _{4}}{z}+2\frac{\Delta _{6}}{z}}\times e^{\displaystyle \frac{1}{2}J+\frac{5}{16}C+\frac{17}{64}F}\times \cosh \left( \displaystyle \frac{1}{2}J+\frac{5}{16}C+\frac{17}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 2\frac{\Delta _{2}}{z}+2\frac{\Delta _{4}}{z}+2\frac{\Delta _{6}}{z}}\times e^{\displaystyle -\frac{1}{2}J-\frac{5}{16}C-\frac{17}{64}F}\times \cosh \left( \displaystyle \frac{1}{2}J+\frac{5}{16}C+\frac{17}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 8\frac{\Delta _{2}}{z}+32\frac{\Delta _{4}}{z}+128\frac{\Delta _{6}}{z}}\times e^{\displaystyle J+\frac{17}{8}C+\frac{257}{32}F}\times \cosh \left( \displaystyle J+\frac{17}{8}C+\frac{257}{32}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 8\frac{\Delta _{2}}{z}+32\frac{\Delta _{4}}{z}+128\frac{\Delta _{6}}{z}}\times e^{\displaystyle -J-\frac{17}{8}C-\frac{257}{32}F}\times \cosh \left( J+\frac{17}{8}C+\frac{257}{32}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 18\frac{\Delta _{2}}{z}+162\frac{\Delta _{4}}{z}+1458\frac{\Delta _{6}}{z}}\times e^{\displaystyle \frac{3}{2}J+\frac{111}{16}C+\frac{3891}{64}F}\times \cosh \left( \displaystyle \frac{3}{2}J +\frac{111}{16}C+\frac{3891}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 18\frac{\Delta _{2}}{z}+162\frac{\Delta _{4}}{z}+1458\frac{\Delta _{6}}{z}}\times e^{\displaystyle -\frac{3}{2}J-\frac{111}{16}C- \frac{3891}{64}F}\times \cosh \left( \displaystyle \frac{3}{2}J+\frac{111}{16}C+\frac{3891}{64}F\right) \end{aligned}$$
    (16)
  • For \(\displaystyle \left( \sigma _{2}, S_{1}\right) =\left\{ \left( \frac{1}{2}, 1\right) ;\left( -\frac{1}{2}, -1\right) \right\}\)

    $$\begin{aligned} F_{\frac{1}{2},1}= \, & {} 2\cdot e^{\displaystyle \frac{\Delta _{2}}{z}+\frac{\Delta _{4}}{z}+\frac{\Delta _{6}}{z}} \times \cosh \left( \displaystyle \frac{1}{2}J+\frac{5}{16}C+\frac{17}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 3\frac{\Delta _{2}}{z}+3\frac{\Delta _{4}}{z}+3\frac{\Delta _{6}}{z}}\times e^{\displaystyle \frac{1}{2}J+ \frac{5}{16}C+\frac{17}{64}F} \times \cosh \left( \displaystyle J+\frac{10}{16}C+\frac{34}{64}F\right) \nonumber \\{} & {} + 2\cdot e^{\displaystyle 3\frac{\Delta _{2}}{z}+3\frac{\Delta _{4}}{z}+3\frac{\Delta _{6}}{z}}\times e^{\displaystyle -\frac{1}{2}J-\frac{5}{16}C-\frac{17}{64}F}\nonumber \\{} & {} +2\cdot e^{\displaystyle 9\frac{\Delta _{2}}{z}+33\frac{\Delta _{4}}{z}+129\frac{\Delta _{6}}{z}}\times e^{\displaystyle J+\frac{17}{8}C+\frac{257}{32}F}\times \cosh \left( \displaystyle \frac{3}{2}J+\frac{39}{16}C+\frac{531}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 9\frac{\Delta _{2}}{z}+33\frac{\Delta _{4}}{z}+129\frac{\Delta _{6}}{z}}\times e^{\displaystyle -J-\frac{17}{8}C-\frac{257}{32}F}\times \cosh \left( \displaystyle \frac{1}{2}J+\frac{29}{16}C+\frac{497}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 19\frac{\Delta _{2}}{z}+163\frac{\Delta _{4}}{z}+1459\frac{\Delta _{6}}{z}}\times e^{\displaystyle \frac{3}{2}J+\frac{111}{16}C+\frac{3891}{64}F}\times \cosh \left( \displaystyle 2J+\frac{116}{16}C+\frac{3908}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 19\frac{\Delta _{2}}{z}+163\frac{\Delta _{4}}{z}+1459\frac{\Delta _{6}}{z}}\times e^{\displaystyle -\frac{3}{2}J-\frac{111}{16}C-\frac{3891}{64}F}\times \cosh \left( \displaystyle J+\frac{106}{16}C+\frac{3874}{64}F\right) \end{aligned}$$
    (17)
  • For \(\displaystyle \left( \sigma _{2}, S_{1}\right) =\left\{ \left( -\frac{1}{2}, 1\right) ;\left( \frac{1}{2}, -1\right) \right\}\)

    $$\begin{aligned} F_{-\frac{1}{2},1}=F_{\frac{1}{2},-1}=F_{\frac{1}{2},1}\left( J=-J,C=-C, F=-F\right) \end{aligned}$$
    (18)
  • For \(\displaystyle \left( \sigma _{2}, S_{1}\right) =\left\{ \left( \frac{1}{2}, 2\right) ;\left( -\frac{1}{2}, -2\right) \right\}\)

    $$\begin{aligned} F_{\frac{1}{2},2}= \, & {} 2\cdot e^{\displaystyle 4\frac{\Delta _{2}}{z}+16\frac{\Delta _{4}}{z}+64\frac{\Delta _{6}}{z}}\times \cosh \left( \displaystyle J+ \frac{34}{16}C+\frac{514}{64}F\right) \nonumber \\{} & {} + 2\cdot e^{\displaystyle 6\frac{\Delta _{2}}{z}+18\frac{\Delta _{4}}{z}+66\frac{\Delta _{6}}{z}} \times e^{\displaystyle \frac{1}{2}J+ \frac{5}{16}C+\frac{17}{64}F}\times \cosh \left( \displaystyle \frac{3}{2}J+ \frac{39}{16}C+ \frac{531}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 6\frac{\Delta _{2}}{z}+18\frac{\Delta _{4}}{z}+66\frac{\Delta _{6}}{z}} \times e^{\displaystyle -\frac{1}{2}J-\frac{5}{16}C-\frac{17}{64}F}\times \cosh \left( \displaystyle \frac{1}{2}J+ \frac{29}{16}C+ \frac{497}{64}F\right) \nonumber \\{} & {} + 2\cdot e^{\displaystyle 12\frac{\Delta _{2}}{z}+48\frac{\Delta _{4}}{z}+192\frac{\Delta _{6}}{z}}\times e^{\displaystyle J+\frac{17}{8}C+\frac{257}{32}F}\times \cosh \left( \displaystyle 2J+\frac{68}{16}C+\frac{1028}{64}F\right) \nonumber \\{} & {} + 2\cdot e^{\displaystyle 12\frac{\Delta _{2}}{z}+48\frac{\Delta _{4}}{z}+192\frac{\Delta _{6}}{z}}\times e^{\displaystyle -J-\frac{17}{8}C-\frac{257}{32}F} \nonumber \\{} & {} +2\cdot e^{\displaystyle 22\frac{\Delta _{2}}{z}+178\frac{\Delta _{4}}{z}+1522\frac{\Delta _{6}}{z}}\times e^{\displaystyle -\frac{3}{2}J-\frac{111}{16}C-\frac{3891}{64}F}\times \cosh \left( \displaystyle \frac{1}{2}J+\frac{77}{16}C+\frac{3377}{64}F\right) \nonumber \\{} & {} + e^{\displaystyle 22\frac{\Delta _{2}}{z}+178\frac{\Delta _{4}}{z}+1522\frac{\Delta _{6}}{z}}\times e^{\displaystyle \frac{3}{2}J+\frac{111}{16}C+\frac{3891}{64}F}\times \cosh \left( \displaystyle \frac{5}{2}J+\frac{145}{16}C+\frac{4405}{64}F\right) \end{aligned}$$
    (19)
  • For \(\left( \sigma _{2}, S_{1}\right) =\left\{ \left( -\frac{1}{2}, 2\right) ;\left( \frac{1}{2}, -2\right) \right\}\)

    $$\begin{aligned} F_{-\frac{1}{2},2}=F_{\frac{1}{2},-2}=F_{\frac{1}{2},2}\left( J=-J,C=-C, F=-F\right) \end{aligned}$$
    (20)
  • For \(\displaystyle \left( \sigma _{2}, S_{1}\right) =\left\{ \left( \frac{1}{2}, 3\right) ;\left( -\frac{1}{2}, -3\right) \right\}\)

    $$\begin{aligned} F_{\frac{1}{2},3}= \, & {} 2\cdot e^{\displaystyle 9\frac{\Delta _{2}}{z}+81\frac{\Delta _{4}}{z}+729\frac{\Delta _{6}}{z}}\times \cosh \left( \displaystyle \frac{3}{2}J+ \frac{111}{16}C+\frac{3891}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 11\frac{\Delta _{2}}{z}+83\frac{\Delta _{4}}{z}+731\frac{\Delta _{6}}{z}} \times e^{\displaystyle \frac{1}{2}J+ \frac{5}{16}C+\frac{17}{64}F}\times \cosh \left( \displaystyle 2J+ \frac{116}{16}C+ \frac{3908}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 11\frac{\displaystyle \Delta _{2}}{z}+83\frac{\Delta _{4}}{z}+731\frac{\Delta _{6}}{z}} \times e^{\displaystyle -\frac{1}{2}J-\frac{5}{16}C-\frac{17}{64}F}\times \cosh \left( \displaystyle J+ \frac{106}{16}C+ \frac{3874}{64}F\right) \nonumber \\{} & {} +2\cdot e^{\displaystyle 17\frac{\Delta _{2}}{z}+113\frac{\Delta _{4}}{z}+857\frac{\Delta _{6}}{z}}\times e^{\displaystyle -J-\frac{17}{8}C-\frac{257}{32}F}\times \cosh \left( \frac{1}{2}J+\frac{77}{16}C+\frac{3377}{64}F\right) \nonumber \\{} & {} + 2\cdot e^{\displaystyle 17\frac{\Delta _{2}}{z}+113\frac{\Delta _{4}}{z}+857\frac{\Delta _{6}}{z}}\times e^{\displaystyle J+\frac{17}{8}C+\frac{257}{32}F}\times \cosh \left( \displaystyle \frac{5}{2}J+\frac{145}{16}C+\frac{4405}{64}F\right) \nonumber \\{} & {} + 2\cdot e^{\displaystyle 27\frac{\Delta _{2}}{z}+243\frac{\Delta _{4}}{z}+2187\frac{\Delta _{6}}{z}}\times e^{\displaystyle \frac{3}{2}J+\frac{111}{16}C+\frac{3891}{64}F}\times \cosh \left( \displaystyle 3J+\frac{222}{16}C+\frac{7782}{64}F\right) \nonumber \\{} & {} + 2\cdot e^{\displaystyle 27\frac{\Delta _{2}}{z}+243\frac{\Delta _{4}}{z}+2187\frac{\Delta _{6}}{z}}\times e^{\displaystyle -\frac{3}{2}J-\frac{111}{16}C-\frac{3891}{64}F} \end{aligned}$$
    (21)
  • For \(\displaystyle \left( \sigma _{2}, S_{1}\right) =\left\{ \left( -\frac{1}{2}, 3\right) ; \left( \frac{1}{2}, -3\right) \right\}\)

    $$\begin{aligned} F_{-\frac{1}{2},3}=F_{\frac{1}{2},-3}=F_{\frac{1}{2},3}\left( J=-J,C=-C, F=-F\right) \end{aligned}$$
    (22)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhrach, T., Zahir, H., Fathi, A. et al. Phase diagrams and thermodynamic study of the mixed spin-1/2 and spin-3 Blume-Capel model: renormalization group theory. Eur. Phys. J. Plus 139, 388 (2024). https://doi.org/10.1140/epjp/s13360-024-05190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05190-3

Navigation