Skip to main content

Advertisement

Log in

4He in Nano-porous Media: Superfluidity and Quantum Phase Transition

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

This paper reviews recent findings of novel phenomena in 4He confined to a nano-porous glass. We examined pressure–temperature (P-T) phase diagram of 4He confined in a porous Gelsil glass that had nanopores 2.5 nm in diameter, by torsional oscillator and pressure studies. The obtained phase diagram is fairly unprecedented

the superfluid transition temperature approaches zero at 3.4 MPa, and a novel nonsuperfluid phase exists between the superfluid and solid phase. These observations indicate that the confined 4He undergoes a superfluid-nonsuperfluid-solid quantum phase transition at zero temperature. We propose that the nonsuperfluid phase may be a localized Bose-condensed state in which global phase coherence is destroyed by a strong correlation between the 4He atoms or by a random potential. 4He in nanospace is an excellent model system for studying a strongly correlated Bose liquid and solid in a confinement potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher M.P.A. et al., (1989). Phys. Rev. B40, 546

    Article  ADS  Google Scholar 

  2. Greiner M. et al., (2002). Nature 415, 39

    Article  ADS  Google Scholar 

  3. Reppy J.D. et al., (2000). Phys. Rev. Lett. 84: 2060

    Article  ADS  Google Scholar 

  4. Chan M.H.W. et al., (1988). Phys. Rev. Lett. 61: 1950

    Article  ADS  Google Scholar 

  5. Kim E., and Chan M.H.W., Nature 427, 225 (2004) [ Science 305, 1941 (2004)].

  6. Adams E.D. et al., (1984). Phys. Rev. Lett. 52: 2249

    Article  ADS  Google Scholar 

  7. Beamish J.R. et al., (1983). Phys. Rev. Lett. 50, 425

    Article  ADS  Google Scholar 

  8. Cao L.-Z. et al., (1986). Phys. Rev. B33, 106

    Article  ADS  Google Scholar 

  9. Brooks J.S. et al., Phys. Rev. B19, 4524 (1979) and references therein.

  10. Yamamoto K. et al., (2004). Phys. Rev. Lett. 93: 075302

    Article  ADS  Google Scholar 

  11. Yamamoto K. et al., Proceedings of LT24, AIP Conference Proceedings Series, in press.

  12. Miyamoto S. and Takano Y., Czech J. Phys. 46, 137 (1996); S. Miyamoto, Thesis, University of Florida (1995).

  13. T. Kobayashi et al., Proceedings of LT24, AIP Conference Proceedings Series, in press.

  14. Sondhi S.L. et al., (1997). Rev. Mod. Phys. 69, 315

    Article  ADS  Google Scholar 

  15. Glyde H.R. et al., Phys. Rev. Lett. 84, 2646 (2000); O. Plantevin et al., Phys. Rev. B65, 224505 (2002).

  16. M. Kobayashi and M. Tsubota, cond-mat/0510335.

  17. Toda R. et al., (2005). J. Low Temp. Phys. 138, 177

    Article  Google Scholar 

  18. Crowell P.A. et al., (1995). Phys. Rev. Lett. 75: 1106

    Article  ADS  Google Scholar 

  19. Geerligs L.J. et al., (1989). Phys. Rev. Lett. 63, 326

    Article  ADS  Google Scholar 

  20. Merchant L. et al., (2001). Phys. Rev. B63: 134508

    Article  ADS  Google Scholar 

  21. Emery V.J., Kivelson S.A., (1995). Nature 374, 434

    Article  ADS  Google Scholar 

  22. Mulders N. and Glyde H.R., private communication.

  23. Hiroi M. et al., Phys. Rev. B40, 6581 (1989); T. Mizusaki, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiya Shirahama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirahama, K. 4He in Nano-porous Media: Superfluidity and Quantum Phase Transition. J Low Temp Phys 146, 485–497 (2007). https://doi.org/10.1007/s10909-006-9277-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9277-6

PACS Number

Navigation