Skip to main content
Log in

Allometry of Male Grasping Apparatus in Odonates Does Not Suggest Physical Coercion of Females

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Male abdominal grasping apparatus that are used to secure a female prior, during and after mating, are widespread in arthropods. The scarce evidence regarding its selective regime suggests that they are male adaptations to circumvent female mating decisions, as predicted by the sexual conflict hypothesis. A recent discussion regarding this way of selection suggests that, similar to weapons and traits that have to do with physical endurance, grasping apparatus should show hyperallometry (proportionally larger compared to body size) as an indication of selection towards increased size. We have tested this idea by measuring the length, width and area of the grasping apparatus of five dragonfly species (Anax junius, Rhionaeschna multicolor, Dythemis nigrescens, D. sterilis and Phyllogomphoides pacificus). We used two proxies of body size (wing and body length). Our measures did not indicate any pattern of hyperallometry. Thus, the grasping apparatus in these animals does not seem to be positively selected for increased size as would be expected if they were forcing females to mate. Given this, we discuss three other explanations for the maintenance of the grasping apparatus in odonates: 1) a firm grip that secures the tandem and mating position; 2) courtship devices subject to female choice; and, 3) isolation structures that mechanically prevent interspecific matings. The first hypothesis, however, could not explain the highly elaborated and species specific morphology of grasping apparatus in these animals. Support for the second hypothesis comes from the fact that odonate females have mechanoreceptor sensilla embedded in their mesostigmal plates (the place grabbed by the grasping apparatus). For the third hypothesis, coevolutionary patterns in morphology in the grasping apparatus and mesostigmal plates in some Zygoptera can also be used as support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnqvist G (1997) The evolution of water strider mating systems: causes and consequences of sexual conflicts. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 146–163. doi:10.1017/CBO9780511721946.009

    Chapter  Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton

    Google Scholar 

  • Cham S (2008) Underwater tandem formation in common blue damselfly Enallagma cyathigerum and the need for contact guarding. J Br Dragonfly Soc 24:24–31

    Google Scholar 

  • Clutton-Brock TH (1982) The functions of antlers. Behaviour 79:108–124. doi:10.1163/156853982X00201

    Article  Google Scholar 

  • Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley, Essex

    Google Scholar 

  • Cordero A (1999) Forced copulations and female contact guarding at a high male density in a Calopterygid damselfly. J Insect Behav 12:27–37. doi:10.1023/a:1020972913683

    Article  Google Scholar 

  • Cordero Rivera A, Andres JA (2002) Male coercion and convenience polyandry in a calopterygid damselfly. J Insect Sci 2:1–7 http://insectscience.org/2.14

  • Cordero Rivera A, Córdoba-Aguilar A (2010) Selective forces propelling genitalic evolution in Odonata. In: Leonard J, Córdoba-Aguilar A (eds) The evolution of primary characters in animals. Oxford University Press, Oxford, pp 332–352

    Google Scholar 

  • Cordero A, Santolamazza-Carbone S, Utzeri C (1992) A twenty-four-hours-lasting tandem in Coenagrion scitulum (Ramb.) in the laboratory (Zygoptera: Coenagrionidae). Not Odonatol 3:166–167

    Google Scholar 

  • Cordero A, Santolamazza-Carbone S, Utzeri C (1995) Male disturbance, repeated insemination and sperm competition in the damselfly Coenagrion scitulum (Zygoptera: Coenagrionidae). Anim Behav 49:437–449. doi:10.1006/anbe.1995.0057

    Article  Google Scholar 

  • Córdoba-Aguilar A (2006) Sperm ejection as a possible cryptic female choice mechanism in Odonata (Insecta). Physiol Entomol 31:146–153. doi:10.1111/j.1365-3032.2005.00498.x

    Article  Google Scholar 

  • Córdoba-Aguilar A, Serrano-Meneses MA, Cordero-Rivera A (2009) Copulation duration in nonterritorial odonate species lasts longer than in territorial species. Ann Entomol Soc Am 102:694–701. doi:10.1603/008.102.0414

    Article  Google Scholar 

  • Córdoba-Aguilar A, López-Valenzuela A, Brunel O (2010) Allometry in damselfly ornamental and genital traits: solving some pitfalls of allometry and sexual selection. Genetica 138:1141–1146. doi:10.1007/s10709-010-9504-6

    Article  PubMed  Google Scholar 

  • Cothran RD (2008) Phenotypic manipulation reveals sexual conflict over precopula duration. Behav Ecol Sociobiol 62:1409–1416. doi:10.1007/s00265-008-0570-z

    Article  Google Scholar 

  • Dunkle SW (1984) Head damage due to mating in Ophiogomphus dragonflies (Anisoptera: Gomphidae). Not Odonatol 2:63–64

    Google Scholar 

  • Dunkle SW (1991) Aeolagrion axine spec. nov., a new damselfly from Ecuador (Zygoptera: Coenagrionidae). Odonatologica 20:239–244

    Google Scholar 

  • Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Harvard

    Book  Google Scholar 

  • Eberhard WG (2009) Static allometry and animal genitalia. Evolution 63:48–66. doi:10.1111/j.1558-5646.2008.00528.x

    Article  PubMed  Google Scholar 

  • Eberhard WG (2010) Rapid divergent evolution of genitalia: theory and data updated. In: Leonard JL, Córdoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford, pp 40–78

    Google Scholar 

  • Eberhard W, Huber B, Rodriguez R et al (1998) One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52:415–431. doi:10.2307/2411078

    Article  Google Scholar 

  • Fincke OM (1984) Giant damselflies in a tropical forest: reproductive biology of Megaloprepus coerulatus with notes on Mecistogaster (Zygoptera: Pseudostigmatidae). Adv Odonatol 2:13–27

    Google Scholar 

  • Gao Q, Hua B (2013) Co-evolution of the mating position and male genitalia in insects: a case study of a hangingfly. PLoS One 8(12):e80651. doi:10.137/journal.pone.0080651

    Article  PubMed Central  PubMed  Google Scholar 

  • Gorb SN (1998a) Functional morphology of the head-arrester system in Odonata. Zoologica 148:1–132. doi:10.1016/S0022-1910(98)00068-7

    Google Scholar 

  • Gorb SN (1998b) Origin and pathway of the epidermal secretion in the damselfly head- arresting system (Insecta: Odonata). J Insect Physiol 44:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Gorb SN (1999) Evolution of the dragonfly head-arresting system. Proc R Soc B Biol Sci 266:525–535. doi:10.1098/rspb.1999.0668

    Article  Google Scholar 

  • Green A (1992) Positive allometry is likely with mate choice, competitive display and other functions. Anim Behav 43:170–172. doi:10.1016/s0003-3472(05)80086-7

    Article  Google Scholar 

  • Huber BA (2010) Mating positions and the evolution of asymmetric insect genitalia. Genetica 138:19–25. doi:10.1007/s10709-008-9339-6

    Article  PubMed  Google Scholar 

  • Khila A, Abouheif E, Rowe L (2012) Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science 336:585–589. doi:10.1126/science.1217258

    Article  CAS  PubMed  Google Scholar 

  • Kodrick-Brown A, Sibly RM, Brown JH (2006) The allometry of ornaments and weapons. Proc Natl Acad Sci U S A 103:8733–8738. doi:10.1073/pnas.0602994103

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • McPeek MA, Shen L, Torrey JZ, Farid H (2008) The tempo and mode of three-dimensional morphological evolution in male reproductive structures. Am Nat 171:E158–E178. doi:10.1086/587076

    Article  PubMed  Google Scholar 

  • McPeek MA, Shen L, Farid H (2009) The correlated evolution of three-dimensional reproductive structures between male and female damselflies. Evolution 63:73–83. doi:10.1111/j.1558-5646.2008.00527.x

    Article  PubMed  Google Scholar 

  • McPeek MA, Symes LB, Zong DM, McPeek CL (2011) Species recognition and patterns of population variation in the reproductive structures of a damselfly genus. Evolution 65:419–428. doi:10.1111/j.1558-5646.2010.01138.x

    Article  PubMed  Google Scholar 

  • Meurgey F, Faucheux MJ (2009) Sensilla on the male paraprocts of Protoneura romanae Meurgey (Zygoptera: Protoneuridae). Odonatologica 38:267–271

    Google Scholar 

  • Outomuro D, Cordero-Rivera A (2012) Allometry of secondary, primary, and nonsexual traits in the beautiful demoiselle (Calopteryx virgo meridionalis). Can J Zool 90:1094–1101. doi:10.1139/z2012-076

    Article  Google Scholar 

  • Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc Lond B Biol Sci 361:235–259. doi:10.1098/rstb.2005.1785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulson D (1974) Reproductive isolation in damselflies. Syst Zool 23:40–49. doi:10.2307/2412238

    Article  Google Scholar 

  • Peretti A, Eberhard WG, Briceño RD (2006) Copulatory dialogue: female spiders sing during copulation to influence male genitalic movements. Anim Behav 72:413–421. doi:10.1016/j.anbehav.2006.01.014

    Article  Google Scholar 

  • Perry JC, Rowe L (2012) Sexual conflict and antagonistic coevolution across water strider populations. Evolution 66:544–557. doi:10.1111/j.1558-5646.2011.01464.x

    Article  PubMed  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • R Core Development Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Robertson H, Paterson H (1982) Mate recognition and mechanical isolation in Enallagma-damselflies (Odonata, Coenagrionidae). Evolution 36:243–250. doi:10.2307/2408042

    Article  Google Scholar 

  • Rodríguez-Márquez IA, Peretti AV (2010) Intersexual cooperation during male clasping of external female genitalia in the spider Physocyclus dugesi (Araneae, Pholcidae). J Ethol 28:153–163. doi:10.1007/s10164-009-0168-6

    Article  Google Scholar 

  • Rowe L, Arnqvist G (2002) Sexually antagonistic coevolution in a mating system: combining experimental and comparative approaches to address evolutionary processes. Evolution 56:754–767. http://www.jstor.org/stable/3061658 doi: 10.1111/j.0014-3820.2002.tb01386.x

  • Sánchez-Guillén RA, Wullenreuther M, Cordero Rivera A (2012) Strong asymmetry in the relative strengths of prezygotic and postzygotic barriers between two damselfly sister species. Evolution 66:690–707. doi:10.1111/j.1558-5646.2011.01469.x

    Article  PubMed  Google Scholar 

  • Svensson EI, Karlsson K, Friberg M, Eroukhmanoff F (2007) Gender differences in species recognition and the evolution of asymmetric sexual isolation. Curr Biol 17:1943–1947. doi:10.1016/j.cub.2007.09.038

    Article  CAS  PubMed  Google Scholar 

  • Waage JK (1979) Reproductive character displacement in Calopteryx (Odonata: Calopterygidae). Evolution 33:104–116. doi:10.2307/2407369

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291. doi:10.1017/S1464793106007007

    Article  PubMed  Google Scholar 

  • Wildermuth H (1984) Drei aussergewohnliche Beobachtungen zum Fortpflanzungsverhalten der Libellen. Mitteilungen der Entomol Gesellschaft Basel 34:121–129

    Google Scholar 

  • Wildermuth H (1991) Behaviour of Perithemis mooma Kirby at the oviposition site (Anisoptera: Libellulidae). Odonatologica 20:471–478

    Google Scholar 

Download references

Acknowledgments

To R. I. Martínez Becerril for his logistic help. Financial support was possible via a PAPIIT-UNAM grant (IN 222312). To one anonymous reviewer whose comments improved a preliminary version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Córdoba-Aguilar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Suppl. mat. Figure 1

Male upper grasping apparatus for each species used in this study. Left: distal abdomen with both grasping apparatus; right: the right apparatus used. The right grasping apparatus shows where width (yellow line), area (red line) and length (the most extreme points from basis to distal site) were measured (GIF 128 kb)

High Resolution Image (TIFF 20725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdoba-Aguilar, A., Vrech, D.E., Rivas, M. et al. Allometry of Male Grasping Apparatus in Odonates Does Not Suggest Physical Coercion of Females. J Insect Behav 28, 15–25 (2015). https://doi.org/10.1007/s10905-014-9477-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-014-9477-x

Keywords

Navigation