Skip to main content
Log in

Selective Feeding of Helicoverpa armigera (Hübner) and Spodoptera litura (Fabricius) on Meridic Diet with Bacillus thuringiensis Toxins

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Laboratory experiments were conducted to evaluate the behavior of Helicoverpa armigera (Hübner) and Spodoptera litura (Fabricius) larvae on meridic diet with different concentrations of Bt spray formulation Delfin or isolated Cry1Ac protein or the foliage and bolls from transgenic cotton, Bollgard hybrid RCH-317 Bt. Both insect species selectively fed on nontreated diet compared with the diet treated with Delfin. While H. armigera exhibited concentration response with Cry1Ac, this protein did not affect S. litura larvae. In general Helicoverpa selected diet with low concentrations (EC20 and EC50 levels) of Cry1Ac compared with higher concentrations of Cry1Ac. In order to develop appropriate management strategies, a thorough understanding of the behavioral mechanisms leading to the responses of insects to the proteins in transgenic varieties is required. Thus, based on results of the insects fed individually on the leaf discs or bolls from transgenic cotton plants alone or under choice situation with meridic diet revealed that H. armigera larvae preferred meridic diet to transgenic leaves or bolls expressing Cry1Ac protein. H. armigera larvae preferred meridic diet to plant material; more than 70% larvae were seen on the meridic diet, and average larval weight gain was in the range of 121.7–130.5 mg. However, in case of S. litura the larvae showed no significant discrimination between meridic diet and the leaf discs. In fact more than 60% larvae preferred leaf discs for feeding, though Cry1Ac expression in leaf discs was in the range of 0.9–2.18 μg/g. Thus differences in behavioral response could potentially impact the level of efficacy of crop cultivars that have been genetically engineered to produce these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamczyk JJ Jr., Hardee DD, Adams LC, Sumerford DV (2001a) Correlating differences in larval survival and development of bollworm (Lepidoptera: Noctuidae) and fall armyworm (Lepidoptera: Noctuidae) to differential expression of Cry1Ac d-endotoxin in various plant parts among commercial cultivars of transgenic Bacillus thuringiensis cotton. J Econ Entomol 94:284–290

    PubMed  CAS  Google Scholar 

  • Adamczyk JJ Jr., Adams LC, Hardee DD (2001b) Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. J Econ Entomol 94:1589–1593

    PubMed  CAS  Google Scholar 

  • Ashfaq M, Young SY, McNew RW (2001) Bollworm (Lepidoptera: Noctuidae) development and movement on Bacillus thuringiensis-treated cotton leaves. J Entomol Sci 36:23–33

    Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton M (2004) Insect resistance management in GM crops: past present and future. Nature Biotechnol 23:57–62

    Article  CAS  Google Scholar 

  • Benedict JH, Altman DW, Umbeck PF, Ring DR (1992) Behavior, growth, survival, and plant injury by Heliothis virescens (F.) (Lepidoptera: Noctuidae) on transgenic Bt cottons. J Econ Entomol 85:589–593

    Google Scholar 

  • Benedict JH, Sachs ES, Altman DW, Ring DR, Stone TB, Sims SR (1993) Impact of d-endotoxin-producing transgenic cotton on insect-plant interactions with Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). Environ. Entomol. 22:1–9

    CAS  Google Scholar 

  • Benedict JH, Sachs ES, Halcomb JL, Ring DR, Cook B, Stelly DM, Altman DW, Kohel RJ, Correa JC, Goynes MW (1994) Feeding preference and movement of tobacco budworm and bollworm in mixed stands of transgenic Bt and non-Bt cotton. Annu Plant Resistance Insects News 20:31–32

    Google Scholar 

  • Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. PNAS 103:15196–15199

    Article  PubMed  CAS  Google Scholar 

  • Chitkowski RL, Turnipseed SG, Sullivan MJ, Bridges WC Jr (2003) Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Econ Entomol 96:755–762

    PubMed  CAS  Google Scholar 

  • Dutton A, Romeis J, Bigler F (2005) Effects of Bt maize expressing Cry1Ab and Bt spray on Spodoptera littoralis. Entomol Exp Appl 114:161–169

    Article  CAS  Google Scholar 

  • English L, Robbins HL, von Tersch MA, Kulesza CA, Ave D, Coyle D, Jany CS, Slatin SL (1994) Mode of action of CryIIA: a Bacillus thuringiensis delta-endotoxin. Insect Biochem Mol Biol 24:1025–1035

    Article  CAS  Google Scholar 

  • Ferre J, van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  PubMed  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Unversity press, Cambridge, UK

    Google Scholar 

  • Fitt GP (2003) Implementation and impact of transgenic Bt-cottons in Australia. In: A. Swanepoel (ed) Proceedings World Cotton Research Conference-3, Agricultural Research Council-IIC, Cape Town, South Africa, pp 365–382

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester, UK

    Google Scholar 

  • Gore J, Leonard BR, Adamczyk JJ (2001) Bollworm (Lepidoptera: Noctuidae) survival on Bollgard and Bollgard II cotton flower bud and flower components. J Econ Entomol 94:1445–1451

    PubMed  CAS  Google Scholar 

  • Gore J, Leonard BR, Church GE, Cook DR (2002) Behavior of bollworm (Lepidoptera: Noctuidae) larvae on genetically engineered cotton. J Econ Entomol 95:763–769

    PubMed  CAS  Google Scholar 

  • Gore J, Leonard BR, Gable RH (2003) Distribution of bollworm, Helicoverpa zea (Boddie), injured reproductive structures on genetically engineered Bacillus thuringiensis Thuringiensis var. kurstaki Berliner cotton. J Econ Entomol 96:699–705

    PubMed  CAS  Google Scholar 

  • Gore J, Adamczyk JJ Jr., Blanco CA (2005) Selective feeding of tobacco budworm and bollworm (Lepidoptera: Noctuidae) on meridic diet with different concentrations of Bacillus thuringiensis proteins. J Econ Entomol 98:88–94

    PubMed  CAS  Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  PubMed  CAS  Google Scholar 

  • Gould F, Anderson A (1991) Effects of Bacillus thuringiensis and HD-73 delta-endotoxin on growth, behavior, and fitness of susceptible and toxin adapted strains of Heliothis virescens (Lepidoptera: Noctuidae). Environ Entomol 20:30–38

    Google Scholar 

  • Greenplate JT (1999) Quantification of Bacillus thuringiensis insect control protein Cry1Ac over time in Bollgard cotton fruit and terminals. J Econ Entomol 92:1377–1383

    CAS  Google Scholar 

  • Greenplate JT, Mullins JW, Penn SR, Dahm A, Reich BJ, Osborn JA, Rahn PR, Ruschke L, Shappley ZW (2003) Partial characterization of cotton plants expressing two toxin proteins from Bacillus thuringiensis: relative toxin contribution, toxin interaction, and resistance management. J Appl Entomol 127:340–347

    Article  CAS  Google Scholar 

  • Groot AT, Dicke M (2002) Insect resistant transgenic plants in a multi-trophic context. Plant J 31:387–406

    Article  PubMed  CAS  Google Scholar 

  • Jackson RE, Bradley JR Jr, Van Duyn JW (2003) Field performance of transgenic cottons expressing one or two Bacillus thuringiensis endotoxins against bollworm, Helicoverpa zea (Boddie). J Cotton Sci 7:57–64 (http://journal.cotton.org)

    Google Scholar 

  • Janmaat AF, Myers JH (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc R Soc Lond B 270:2263–2270

    Article  Google Scholar 

  • King EG, Hartley GG (1985) Diatraea saccharalis. In: Singh P, Moore R, F (eds) Handbook of insect rearing, vol. 2. Elsevier, Amsterdam, The Netherlands, pp 265–270

    Google Scholar 

  • Koul O, Smirle MJ, Isman MB (1990) Asarones from Acorus calamus L. oil: Their effect on feeding behaviour and dietary utilization in Peridroma saucia. J Chem Ecol 16:1911–1920

    Article  CAS  Google Scholar 

  • Koul O, Shankar JS, Mehta N, Taneja SC, Tripathi AK, Dhar KL (1997) Bioefficacy of crude extracts of Aglaia species (Meliaceae) and some active fractions against lepidopteran larvae. J Appl Entomol 121:245–248

    Article  Google Scholar 

  • Koul O, Multani JS, Goomber S, Daniewski WM, Berlozecki S (2004) Activity of some non-azadirachtin limonoids from Azadirachta indica against lepidopteran larvae. Aust J Entomol 43:189–195

    Article  Google Scholar 

  • Kranthi KR, Naidu S, Dhawad CS, Tatwawadi A, Mate K, Patil E, Bharose AA, Behere GT, Wadaskar RM, Kranthi S (2005) Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). Curr Sci 89:291–298

    CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute, Cary, NC

    Google Scholar 

  • Luttrell RG, Wan L, Knighten K (1999) Variation in susceptibility of noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis. J Econ Entomol 92:21–32

    CAS  Google Scholar 

  • Martinez C, Porcar M, Lopez A, de Escudero IR, Perez-Llarena FJ, Primitivo C (2004) Characterization of a Bacillus thuringiensis strain with a broad spectrum of activity against lepidopteran insects. Entomol Exp Appl 111:71–77

    Article  CAS  Google Scholar 

  • Mohd-Salleh MB, Lewis LC (1982) Feeding deterrent response of corn insects to b-exotoxin of Bacillus thuringiensis. J Invertebr Pathol 39:323–328

    Article  CAS  Google Scholar 

  • Nguyen HT, Jehle JA (2007) Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize MON810. J Plant Dis Prot 114:820–887

    Google Scholar 

  • Parker CD Jr, Luttrell RG (1999) Interplant movement of Heliothis virescens (Lepidoptera: Noctuidae) larvae in pure and mixed plantings of cotton with and without expression of the Cry1Ac d-endotoxin protein of Bacillus thuringiensis Berliner. J Econ Entomol 92:837–845

    PubMed  Google Scholar 

  • Pilcher CD, Rice MD, Obrycki JJ, Lewis LC (1997) Field and laboratory evaluation of transgenic Bacillus thuringiensis corn on secondary lepidopteran pests (Lepidoptera: Noctuidae). J Econ Entomol 90:669–678

    Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnol 24:63–71

    Article  CAS  Google Scholar 

  • Roush RT (1998) Two-toxin strategies for management of insect resistant transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc London Ser B 353:1777–1786

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1999) Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Trends Biotechnol 17:210–216

    Article  PubMed  CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  PubMed  CAS  Google Scholar 

  • Singh G, Rup PJ, Koul O (2006) Combination effects of azadirachtin and Bacillus thuringiensis toxins on Spodoptera litura (Fabricius) larvae. Biopestic Int 2:60–72

    Google Scholar 

  • Singh G, Rup PJ, Koul O (2007) Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bull Entomol Res 97:351–357

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tabashnik BE, Carriere Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton AM, Zhao J-Z (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol 96:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • van Frankenhuyze K (1993) The challenge of Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey M, Higgs S (eds) An environmental biopesticide: theory and practice. Wiley, Chichester, UK, pp 1–35

    Google Scholar 

  • van Rie J, Jansens S, Höfte H, Degheele D, van Mellaert H (1990) Receptors on the z brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol 56:1378–1385

    PubMed  Google Scholar 

  • Walker GP, Cameron PJ, MacDonald FM, Madhusudhan VV, Wallace AR (2007) Impact of Bacillus thuringiensis toxins on parasitoids (Hymenoptera: Braconidae) of Spodoptera litura and Helicoverpa armigera (Lepidoptera: Noctuidae). Biol Contemp 40:142–151

    Article  CAS  Google Scholar 

  • Zhang JH, Wang CZ, Qin JD, Guo SD (2004) Feeding behaviour of Helicoverpa armigera larvae on insect-resistant transgenic cotton and non-transgenic cotton. J Appl Entomol 128:218–225

    Article  Google Scholar 

  • Zhao JZ, Fan YL, Fan XL, Shi XP, Lu MG (1999) Evaluation of transgenic tobacco expressing two insecticidal genes to delay resistance development of Helicoverpa armigera. Chin Sci Bull 44:1871–1873

    Article  Google Scholar 

  • Zhao JZ, Cao J, Collins HI, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci U S A 102:8426–8430

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Angelika Hilbeck, Swiss Federal Institute of Technology, Zurich for valuable comments on the earlier draft of this manuscript. GS is also thankful to ICAR for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Opender Koul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, G., Rup, P.J. & Koul, O. Selective Feeding of Helicoverpa armigera (Hübner) and Spodoptera litura (Fabricius) on Meridic Diet with Bacillus thuringiensis Toxins. J Insect Behav 21, 407–421 (2008). https://doi.org/10.1007/s10905-008-9139-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-008-9139-y

Keywords

Navigation