Skip to main content
Log in

Effect of silicon on tritrophic interaction of cotton, Gossypium hirsutum (Linnaeus), Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and the predator, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae)

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The development of resistance in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) against a number of conventional and new chemistry insecticides has encouraged researchers to exploit some eco-friendly integrated pest management approaches to keep the pest population below their threshold levels. In the current laboratory trials, a free choice cotton leaf-disc assay was conducted to check the effect of silicon on oviposition preference of B. tabaci. Moreover, a predator–prey bioassay was also conducted to compare the developmental and reproductive traits of the predator, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) when offered B. tabaci that had either been fed on silicon-treated or untreated cotton plants. The results indicate that silicon treatments significantly reduced the oviposition preference of B. tabaci, however, a more profound effect was observed in the case of foliar applications of silicon as compared to its drenching treatments. Similarly, leaf discs harvested from plants treated with SiO2 showed a significant decline in the number of oviposited eggs as compared to K2SiO3 treatments. However, silicon application did not induce any indirect negative effect on the developmental and reproductive traits of the predator, C. carnea except for its fecundity which might be affected due to feeding on poorer quality host. The current results suggest that feeding of silicon exposed prey does not inflict any direct harmful effects on the biology of predator, C. carnea, hence their integration can be a promising crop protection strategy to encounter the challenges of resistance development in B. tabaci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas N, Mansoor MM, Shad SA, Pathan AK, Waheed A, Ejaz M, Razaq M, Zulfiqar MA (2014) Fitness cost and realized heritability of resistance to spinosad in Chrysoperla carnea (Neuroptera: Chrysopidae). Bull Entomol Res 104:707–715

    CAS  PubMed  Google Scholar 

  • Ali A, Desneux N, Lu Y, Liu B, Wu K (2016) Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China. Sci Rep 6:24273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amjad M, Bashir MH, Afzal M, Khan MA (2009) Efficacy of some insecticides against (Bemisia tabaci Genn.) infesting cotton under field conditions. Pak J Life Soc Sci 7:140–143

    Google Scholar 

  • Ashfaq M, Nasreen A, Cheema GM (2004) Advances in mass rearing of Chrysoperla carnea (Stephen) (Neuroptera: Chrysopidae). South Pac Stud 24:47–53

    Google Scholar 

  • Awmack CX, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    CAS  PubMed  Google Scholar 

  • Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78–87

    CAS  PubMed  Google Scholar 

  • Blum A (1968) Anatomical phenomena in seedlings of sorghum varieties resistant to sorghum shoot fly Atherigona varia socata. Crop Sci 8:388–391

    Google Scholar 

  • Bompard A, Jaworski CC, Bearez P, Desneux N (2013) Sharing a predator: can an invasive alien pest affect the predation on a local pest? Popul Ecol 55:433–440

    Google Scholar 

  • Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 134:324–333

    CAS  PubMed  Google Scholar 

  • Camargo JMM, Moraes JC, Oliveira EB, Iede ET (2008) Resisteˆncia induzida ao pulga˜o-gigante-do-pinus (Hemiptera: Aphididae) em plantas de Pinus taeda adubadas com silõ´cio. Bragantia 67:927–932

    CAS  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    CAS  PubMed  Google Scholar 

  • Cohen R (1993) A leaf disc assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Dis 77:513–517

    Google Scholar 

  • Connick VJ (2011) The impact of silicon fertilisation on the chemical ecology of grapevine, Vitis vinifera; constitutive and induced chemical defences against arthropod pests and their natural enemies. Master’s Thesis, Charles Sturt University, Albury-Wodonga, NSW, Australia

  • Correa RS, Moraes JC, Auad AM, Carvalho GA (2005) Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Neotrop Entomol 34:429–433

    CAS  Google Scholar 

  • Costa R, Moraes J (2006) Effects of silicic acid and acibenzolar-S-methyl on Schizaphis graminum (Rondani) (Hemiptera: Aphididae). Neotrop Entomol 35:834–839

    CAS  PubMed  Google Scholar 

  • Costa RR, Moraes JC, Costa RR (2009) Interac¸a˜o silõ´cio-imidacloprid no comportamento biolo´gico e alimentar de Schizaphis graminum (Rond.) (Hemiptera: Aphididae) em plantas de trigo. Cienc Agrotec 33:455–460

    CAS  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    PubMed  Google Scholar 

  • Dias PAS, Sampaio MV, Rodrigues MP, Korndorfer AP, Oliveira RS, Ferreira SE, Korndorfer GH (2014) Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae). Environ Entomol 43:949–956

    CAS  PubMed  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro PJ (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Google Scholar 

  • Dogramaci M, Arthurs SP, Chen J, Osborne L (2013) Silicon applications have minimal effects on Scirtothrips dorsalis (Thysanoptera: Thripidae) populations on pepper plant, capsicum annum. Fla Entomol 96:48–54

    CAS  Google Scholar 

  • Ferreira RS, Moraes JC, Antunes CS (2011) Silicon influence on resistance induction against Bemisia tabaci Biotype B (Genn.) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars. Neotrop Entomol 40:495–500

    CAS  PubMed  Google Scholar 

  • Flores GC, Reguilón C, Alderete GL, Kirschbaum DS (2015) Liberación de Chrysoperla argentina (Neuroptera: Chrysopidae) para el control de Trialeurodes vaporariorum (Westwood) (Hemiptera, Aleyrodidae) en invernáculo de pimiento en Tucumán Argentina. Rev Intropica 10:28–36

    Google Scholar 

  • Gamarra DC, Bueno VHP, Auad AM (1997) Efecto de los tricomas glandulares de Solanum berthaultii en el parasitismo de Aphidius colemani (Hymenoptera: Aphidiidae) sobre Myzus persicae (Homoptera: Aphididae). Vedalia 4:21–23

    Google Scholar 

  • Geertsema W, Rossing WAH, Landis DA, Bianchi FJJA, van Rijn PCJ, Schaminée JHJ (2016) Actionable knowledge for ecological intensification of agriculture. Front Ecol Environ 14:209–216

    Google Scholar 

  • Gomes FB, de Moraes JC, dos Santos CD, Goussain MM (2005) Resistance induction in wheat plants by silicon and aphids. Sci Agric 62:547–551

    CAS  Google Scholar 

  • Gomes FB, Moraes JC, dos Santos CD, Antunes CS (2008) Use of silicon as inductor of the resistance in potato to Myzus persicae (Sulzer) (Hemiptera: Aphididae). Neotrop Entomol 37:185–190

    CAS  PubMed  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Willey, New York, p 640

    Google Scholar 

  • Goussain MM, Prado E, Moraes JC (2005) Effect of silicon applied to wheat plants on the biology and probing behaviour of the greenbug Schizaphis graminum (Rond.)(Hemiptera: Aphididae). Neotrop Entomol 34:807–813

    CAS  Google Scholar 

  • Grover S, Jindal V, Banta G (2019) RNA interference mediated knockdown of juvenile hormone esterase gene in Bemisia tabaci (Gennadius): effects on adults and their progeny. J Asia-Pac Entomol 22:56–62

    Google Scholar 

  • Han Y, Li P, Gong S, Yang L, Wen L, Hou M (2016) Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLoS ONE. https://doi.org/10.1371/journal.pone.0153918

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartley SE, Fitt RN, McLarnon EL, Wade RN (2015) Defending the leaf surface: intra and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Front Plant Sci 6:35

    PubMed  PubMed Central  Google Scholar 

  • He W, Yang M, Li Z, Qui J, Liu F, Qu X, Qiu Y, Li R (2015) High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. Crop Prot 67:20–25

    CAS  Google Scholar 

  • Hequet E, Henneberry TJ, Nichols RL (1915) Sticky cotton: causes, effects and prevention. Tech Bull No 1915, USDA-ARS, Beltsville, MD

  • Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    CAS  Google Scholar 

  • Honek A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–492

    Google Scholar 

  • Horowitz AR, Gorman K, Ross G, Denholm I (2003) Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Arch Insect Biochem Physiol 54:177–186

    CAS  PubMed  Google Scholar 

  • Hou ML, Han YQ (2010) Si-mediated rice plant resistance to the Asiatic rice borer: effects of silicon amendment and rice varietal resistance. J Econ Entomol 103:1412–1419

    CAS  PubMed  Google Scholar 

  • Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219

    Google Scholar 

  • Kazmer DJ, Luck RF (1995) Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76:412–425

    Google Scholar 

  • Korndorfer AP, Cherry R, Nagata R (2004) Effect of calcium silicate on feeding and development of tropical sod webworms (Lepidoptera: Pyralidae). Fla Entomol 87:393–395

    Google Scholar 

  • Kuehl RO (2000) Design of experiments: statistical principles of research design and analysis, 2nd edn. Duxbury press, New York, pp 173–184

    Google Scholar 

  • Kvedaras OL, An M, Choi Y, Gurr G (2010) Silicon enhances natural enemy attraction and biological control through induced plant defences. Bull Entomol Res 100:367–371

    CAS  PubMed  Google Scholar 

  • Lavagnini TC, Morales AC, Freitas S (2015) Population genetics of Chrysoperla externa (Neuroptera: Chrysopidae) and implications for biological control. Braz J Biol 75:878–885

    CAS  PubMed  Google Scholar 

  • Liu J, Zhu J, Zhang P, Reynolds OL, Han L, Wu J, Shao Y, You M, Gurr GM (2017) Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front Plant Sci 8:1265

    PubMed  PubMed Central  Google Scholar 

  • Lundgren JG, Gassmann AJ, Bernal J, Duan JJ, Ruberson J (2009) Ecological compatibility of GM crops and biological control. Crop Prot 28:1017–1030

    Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. Stud Plant Sci 8:17–39

    CAS  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Proc Jap Acad Ser B Phys Biol Sci 87:377–385

    CAS  Google Scholar 

  • Mansoor MM, Raza ABM, Abbas N, Aqueel MA, Afzal M (2017) Resistance of green lacewing, Chrysoperla carnea Stephens to nitenpyram: Cross-resistance patterns, mechanism, stability and realized heritability. Pestic Biochem Physiol 135:59–63

    CAS  PubMed  Google Scholar 

  • Mascarin GM, Kobori NN, Quintela ED Jr (2013) The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. Biol Contr 66:209–218

    Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2006) Silicon in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. J Anim Ecol 75:595–603

    PubMed  Google Scholar 

  • Massey FP, Hartley SE (2009) Physical defenses wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol 78:281–291

    PubMed  Google Scholar 

  • Messina FJ, Sorenson SM (2001) Effectiveness of lacewing larvae in reducing Russian wheat aphid populations on susceptible and resistant wheat. Biol Contr 21:19–26

    Google Scholar 

  • Miller BS, Robinson RJ, Johnson JA, Jones ET, Ponnaiya BWX (1960) Studies on the relation between silica in wheat plants and resistance to Hessian fly. J Econ Entomol 53:995–999

    CAS  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    CAS  PubMed  Google Scholar 

  • Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F, Ma JF, Bélanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46

    CAS  PubMed  Google Scholar 

  • Moraes JC, Goussain MM, Basagli MAB, Carvalho GA, Ecole CC, Sampaio MV (2004) Silicon influence on the tritrophic interaction: wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotrop Entomol 33:619–624

    Google Scholar 

  • Norris DM, Kogan M (1980) Biochemical and morphological bases of resistance against insects. In: Maxwell FG, Jenning PR (eds) Breeding plants resistant to insects. Wiley, New York, pp 23–61

    Google Scholar 

  • Obrycki JJ, Tauber MJ (1984) Natural enemy activity on glandular pubescent potato plants in the green house: an unreliable prediction of effects in the field. Environ Entomol 13:679–683

    Google Scholar 

  • Oliveira MRV, Henneberry TJ, Anderson P (2001) History current status and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723

    Google Scholar 

  • Paredes-Montero JR, Hameed U, Zia-Ur-Rehman M, Rasool G, Haider MS, Herrmann HW, Brown JK (2019) Demographic expansion of the predominant Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) mitotypes associated with the cotton leaf curl virus epidemic in Pakistan. Ann Entomol Soc Am 112:265–280

    Google Scholar 

  • Pathan AK, Sayyed AH, Aslam M, Liu TX, Razzaq M, Gillani WA (2010) Resistance to pyrethroids and organophosphates increased fitness and predation potential of Chrysoperla carnea (Neuroptera: Chrysopidae). J Econ Entomol 103:823–834

    CAS  PubMed  Google Scholar 

  • Rahman A, Wallis CM, Uddin W (2015) Silicon-induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 105:748–757

    CAS  PubMed  Google Scholar 

  • Ramnath S, Uthamasamy S (1992) Interaction of host plant resistance and natural enemies for the management of bollworm Heliothis armigera on cotton. In: Ananthakrishnan TN (ed) Emerging trends of biological control of phytophagous insects. Oxford and IBH Pub. Co., Ltd., New Delhi, pp 37–42

    Google Scholar 

  • Ranger CM, Singh AP, Frantz JM, Cañas L, Locke JC, Reding ME, Vorsa N (2009) Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environ Entomol 38:129–136

    CAS  PubMed  Google Scholar 

  • Rao C, Panwar V (2001) Morphological plant factors affecting resistance to Atherigona spp. in maize. Indian J Genet Plant Br 61:314–317

    Google Scholar 

  • Rao GB, Susmitha P (2017) Silicon uptake, transportation and accumulation in rice. J Pharmacogn Phytochem 6:290–293

    CAS  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    CAS  Google Scholar 

  • Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66:108–115

    CAS  Google Scholar 

  • Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155:171–186

    CAS  Google Scholar 

  • Reynolds OL, Padula MP, Zeng R, Gurr GM (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:744

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues FA, Mcnally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, Belanger RR (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathol 94:177–183

    CAS  Google Scholar 

  • Sahito HA, Abro GH, Mahmood R, Malik AQ (2011) Survey of mealy bug, Phenacoccus solenopsis (Tinsley) and effect of bio-ecological factors on its population in different ecological zones of Sindh. Pak J Agric Eng Vet Sci 27:51–65

    Google Scholar 

  • Schuster DJ, Mann RS, Toapanta M, Cordero R, Thompson S, Cyman S, Shurtlef A, Morris Ii RF (2010) Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manag Sci 66:186–195

    CAS  PubMed  Google Scholar 

  • Shadmany M, Omar D, Muhamad R (2015) Biotype and insecticide resistance status of Bemisia tabaci populations from Peninsular Malaysia. J Appl Entomol 139:67–75

    CAS  Google Scholar 

  • Shrestha G, Enkegaard A (2013) The green lacewing, Chrysoperla carnea: preference between lettuce aphids, Nasonovia ribisnigri, and western flower thrips, Frankliniella occidentalis. J Insect Sci 13:94

    PubMed  PubMed Central  Google Scholar 

  • Stansly PA, Naranjo SE (2010) Bemisia: bionomics and management of a global pest. Springer Science and Business Media, Berlin

    Google Scholar 

  • Syed AN, Ashfaq M, Khan S (2005) Comparison of development and predation of Chrysoperla carnea (Neuroptera: Chrysopidae) on different densities of two hosts (Bemisia tabaci, and Amrasca devastans). Pak Entomol 27:231–234

    Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    CAS  PubMed  Google Scholar 

  • Tay WT, Elfekih S, Polaszek A, Court LN, Evans GA, Gordon KHJ, De Barro PJ (2017) Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens. Sci Rep 7:429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valle GE, Lourencao AL (2002) Resistência de genótipos de soja a Bemisia tabaci (Genn.) biótipo B (Hemiptera: Aleyrodidae). Neotrop Entomol 31:285–295

    Google Scholar 

  • Villas Boas GL, Franca FH, Macedo N (2002) Potencial biótico da mosca-branca Bemisiaargentifolii a diferentes plantas hospedeiras. Horticult Bras 20:71–79

    Google Scholar 

  • Villegas JM, Way MO, Pearson RA, Stout MJ (2017) Integrating soil silicon amendment into management programs for insect pests of drill-seeded rice. Plants 6:33

    PubMed Central  Google Scholar 

  • Wang S, Zhang Y, Yang X, Xie W, Wu Q (2017) Resistance monitoring for eight insecticides on the sweetpotato whitefy (Hemiptera: Aleyrodidae) in China. J Econ Entomol 110:660–666

    PubMed  Google Scholar 

  • Yadav R, Pathak PH (2010) Effect of temperature on the consumption capacity of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) reared on four aphid species. Biogeosci 5:271–274

    Google Scholar 

  • Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Han Y, Li P, Li F, Ali S, Hou M (2017) Silicon amendment is involved in the induction of plant defense responses to a phloem feeder. Sci Rep 7:4232

    PubMed  PubMed Central  Google Scholar 

  • Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo S, Zeng R (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci USA 38:3631–3639

    Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962) Chemical forms, mobility, and deposition of silicon in the rice plant. Soil Sci Plant Nutr 8:107–111

    CAS  Google Scholar 

  • Zheng HX, Xie W, Wang SL, Wu QJ, Zhou XM, Zhang YJ (2017) Dynamic monitoring (B versus Q) and further resistance status of Q type Bemisia tabaci in China. Crop Prot 94:115–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design. Asim Abbasi and Muhammad Sufyan conducted the experiment and prepared the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Asim Abbasi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by Yulin Gao and Heikki Hokkanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Sufyan, M., Arif, M.J. et al. Effect of silicon on tritrophic interaction of cotton, Gossypium hirsutum (Linnaeus), Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and the predator, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Arthropod-Plant Interactions 14, 717–725 (2020). https://doi.org/10.1007/s11829-020-09786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-020-09786-1

Keywords

Navigation