Skip to main content

Advertisement

Log in

Preparation and Performance of Novel Flavonoid Phenols-Based Biomass-Modified Phenol Formaldehyde Resins

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Low toxicity, environmentally friendly and sustainable bio-based phenol–formaldehyde (PF) resins are the primary factors and health goals that researchers need to consider when modifying PF resins. Two novel biomass-modified PF resins were synthesized using two flavonoid phenols of daidzein and naringenin with rigid backbone structures. The results show that compared with ordinary PF, the introduction of daidzein and naringenin during the synthesis of N-PF and D-PF can delay the curing reaction and results in higher curing peak temperatures. The appropriate substitution rate of daidzein and naringenin can improve the crosslinking degree, resulting in N-PF and D-PF with higher thermal stability, ablation resistance and mechanical properties. The highest carbon yield YC800 for N-PF is 59.81% (56.85%for PF-1), and the highest YC800 for D-PF is 64.39% (PF-2 with 58.15%). The maximum tensile strength and flexural strengths of N-PF are respective 33.86 MPa and 110.42 MPa (28.77 and 79.89 MPa for PF-1), and the maximum tensile strength and flexural strengths of D-PF are respective 35.61 MPa and 103.17 MPa (24.48 and 55.79 MPa for PF-2). The D-PF and N-PF resins modified and enhanced by daidzein and naringenin have lower friction coefficient and more excellent wear resistance than pure PF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Kiskan, Y. Yagci, The journey of phenolics from the first spark to advanced materials. Isr J Chem. 60(1–2), 20–32 (2020)

    Article  CAS  Google Scholar 

  2. Y. He, R. Duan, Q. Zhang, T. Xia, B. Yan, S. Zhou, J. Huang, Reinforce the mechanical toughness, heat resistance, and friction and wear resistance of phenolic resin via constructing self-assembled hybrid particles of graphite oxide and zirconia as nano-fillers. Adv. Compos. Hybrid. Ma. 4(2), 317–323 (2021)

    Article  CAS  Google Scholar 

  3. L.P. de Hoyos-Martínez, H. Issaoui, R. Herrera, J. Labidi, F. Charrier-El Bouhtoury, Wood fireproofing coatings based on biobased phenolic resins. ACS. Sustain. Chem. Eng. 9(4), 1729–1740 (2021)

    Article  Google Scholar 

  4. K. Zhang, Z. Shang, S. Wu, Commercialized benzoxazine resin-derived porous carbon as high performance electrode materials for supercapacitor. J Inorg Organomet Polym 27(5), 1423–1429 (2017)

    Article  CAS  Google Scholar 

  5. A. Beda, P.L. Taberna, P. Simon, C. Matei Ghimbeu, Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon 139, 248–257 (2018)

    Article  CAS  Google Scholar 

  6. Z. Wei, H.X. Zhao, Y.B. Niu, S.Y. Zhang, Y.B. Wu, H.J. Yan, S. Xin, Y.X. Yin, Y.G. Guo, Insights into the pre-oxidation process of phenolic resin-based hard carbon for sodium storage. Chem. Front. 5(10), 3911–3917 (2021)

    CAS  Google Scholar 

  7. Y. Xu, L. Guo, H. Zhang, H. Zhai, H. Ren, Research status, industrial application demand and prospects of phenolic resin. RSC Adv. 9(50), 28924–28935 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Wu, Z. Chen, F. Wang, Enhanced anti-ablation and alkali corrosion resistance of graphene oxide modified urea-melamine-phenol formaldehyde composites reinforced by R-glass fiber. J Inorg Organomet Polym 29, 1818–1826 (2019)

    Article  CAS  Google Scholar 

  9. T.G. Babu, R. Devasia, Boron modified phenol formaldehyde derived Cf/SiBOC composites with improved mechanical strength for high temperature applications. J Inorg Organomet Polym 26(4), 764–772 (2016)

    Article  Google Scholar 

  10. N.B. Mansour, W. Djeridi, L. ElMir, Preparation, properties and applications of the hybrid organic/inorganic nanocomposite based on nanoporous carbon matrix. J Inorg Organomet Polym 31, 4360–4371 (2021)

    Article  CAS  Google Scholar 

  11. F.F. Binda, V.D.A. Oliveira, C.A. Fortulan, L.B. Palhares, C.G. dos Santos, Friction elements based on phenolic resin and slate powder. Res. Technol. 9(3), 3378–3383 (2020)

    CAS  Google Scholar 

  12. L. Wang, M.X. Liu, F.H. Yang, Comparative study on the structure, mechanical, thermal, and tribological properties of PF composites reinforced by different kinds of mesoporous silicas. J Inorg Organomet Polym 31, 2939–2948 (2021)

    Article  CAS  Google Scholar 

  13. W.M. Moreira, P.V. Viotti, A.A. de Moura, M.L. Gimenes, M.G.A. Vieira, Synthesis of a biobased resin and its screening as an alternative adsorbent for organic and inorganic micropollutant removal. Environ. Sci. Pollut. Res. Int. 29, 79935–79953 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. D. Torres, S. Pérez-Rodríguez, L. Cesari, C. Castel, E. Favre, V. Fierro, A. Celzard, Review on the preparation of carbon membranes derived from phenolic resins for gas separation: from petrochemical precursors to bioresources. Carbon 183, 12–33 (2021)

    Article  CAS  Google Scholar 

  15. L. Guo, Y. Yang, F. Xu, Q. Lan, M. Wei, Y. Wang, Design of gradient nanopores in phenolics for ultrafast water permeation. Chem. Sci. 10(7), 2093–2100 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. X. Xing, Y. Zhao, X. Zhang, J. Wang, T. Hong, Y. Li, S. Wang, C. Zhang, X. Jing, Healable ablative composites from synergistically crosslinked phenolic resin. Chem. Eng. J. 447, 137571 (2022)

    Article  CAS  Google Scholar 

  17. L. Granado, R. Tavernier, S. Henry, R.O. Auke, G. Foyer, G. David, S. Caillol, Toward sustainable phenolic thermosets with high thermal performances. ACS Sustain. Chem. Eng. 7(7), 7209–7217 (2019)

    Article  CAS  Google Scholar 

  18. C. Nair, Advances in addition-cure phenolic resins. Polym. Sci. 29(5), 401–498 (2004)

    CAS  Google Scholar 

  19. J. Chen, K. Zhang, K. Zhang, B. Jiang, Y. Huang, Facile preparation of reprocessable and degradable phenolic resin based on dynamic acetal motifs. Polym. Degrad. Stabil. 196, 109818 (2022)

    Article  CAS  Google Scholar 

  20. K. Błażek, J. Datta, Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit. Rev. Environ. Sci. Technol. 49(3), 173–211 (2019)

    Article  Google Scholar 

  21. A. Noreen, K.M. Zia, M. Zuber, S. Tabasum, A.F. Zahoor, Bio-based polyurethane: an efficient and environment friendly coating systems: a review. Prog. Org. Coat. 91, 25–32 (2016)

    Article  CAS  Google Scholar 

  22. C. Zhang, J. Xue, X. Yang, Y. Ke, R. Ou, Y. Wang, S.A. Madbouly, Q. Wang, From plant phenols to novel bio-based polymers. Prog. Polym. Sci. 125, 101473 (2022)

    Article  CAS  Google Scholar 

  23. M. Derradji, O. Mehelli, W. Liu, N. Fantuzzi, Sustainable and ecofriendly chemical design of high performance bio-based thermosets for advanced applications. Front. Chem. 9, 691117 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Liu, S. Wang, Y. Peng, J. Zhu, W. Zhao, X. Liu, Advances in sustainable thermosetting resins: from renewable feedstock to high performance and recyclability. Prog. Polym. Sci. 113, 101353 (2021)

    Article  CAS  Google Scholar 

  25. P.R. Sarika, P. Nancarrow, A. Khansaheb, T. Ibrahim, Bio-based alternatives to phenol and formaldehyde for the production of resins. Polymers -Basel. 12(10), 2237 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. F.A.M.M. Gonçalves, M. Santos, T. Cernadas, P. Ferreira, P. Alves, Advances in the development of biobased epoxy resins: insight into more sustainable materials and future applications. Int. Mater. Rev. 67(2), 119–149 (2021)

    Article  Google Scholar 

  27. G. Mashouf Roudsari, A.K. Mohanty, M. Misra, Green approaches to engineer tough biobased epoxies: a review. Chem Eng 5(11), 9528–9541 (2017)

    CAS  Google Scholar 

  28. K. Tang, A. Zhang, T. Ge, X. Liu, X. Tang, Y. Li, Research progress on modification of phenolic resin. Mater. Today Commun. 26, 101879 (2021)

    Article  CAS  Google Scholar 

  29. G. Foyer, B.H. Chanfi, D. Virieux, G. David, S. Caillo, Aromatic dialdehyde precursors from lignin derivatives for the synthesis of formaldehyde-free and high char yield phenolic resins. Eur. Polym. J. 77, 65–74 (2016)

    Article  CAS  Google Scholar 

  30. W. Yang, L. Jiao, X. Wang, W. Wu, H. Lian, H. Dai, Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. Int. J. Biol. Macromol. 166, 1312–1319 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. C. Bo, L. Hu, Y. Chen, X. Yang, M. Zhang, Y. Zhou, Synthesis of a novel cardanol-based compound and environmentally sustainable production of phenolic foam. J. Mater. Sci. 53(15), 10784–10797 (2018)

    Article  CAS  Google Scholar 

  32. V. Barbosa, E.C. Ramires, I.A.T. Razera, E. Frollini, Biobased composites from tannin–phenolic polymers reinforced with coir fibers. industrial crops and products. Ind. Crop. Prod. 32(3), 305–312 (2010)

    Article  CAS  Google Scholar 

  33. E.C. Ramires, E. Frollini, Tannin–phenolic resins: Synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Part B-Eng. 43(7), 2851–2860 (2012)

    Article  CAS  Google Scholar 

  34. J. Xu, N. Brodu, M. Mignot, B. Youssef, B. Taouk, Synthesis and characterization of phenolic resins based on pyrolysis bio-oil separated by fractional condensation and water extraction. Biomass Bioenergy. 159, 106393 (2022)

    Article  CAS  Google Scholar 

  35. L. Granado, R. Tavernier, G. Foyer, G. David, S. Caillol, Catalysis for highly thermostable phenol-terephthalaldehyde polymer networks. Chem. Eng. J. 379, 122237 (2020)

    Article  CAS  Google Scholar 

  36. R. Oye Auke, G. Arrachart, R. Tavernier, G. David, S. Pellet-Rostaing, Terephthalaldehyde-phenolic resins as a solid-phase extraction system for the recovery of rare-earth elements. Polymers-Basel. 14(2), 311 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Zhang, Z. Yuan, N. Mahmood, S. Huang, C. Xu, Sustainable bio-phenol-hydroxymethylfurfural resins using phenolated de-polymerized hydrolysis lignin and their application in bio-composites. Ind. Crop. Prod. 79, 84–90 (2016)

    Article  CAS  Google Scholar 

  38. Z. Yuan, Y. Zhang, C. Xu, Synthesis and thermomechanical property study of Novolac phenol-hydroxymethyl furfural (PHMF) resin. RSC Adv. 4(60), 31829–31835 (2014)

    Article  CAS  Google Scholar 

  39. M. Siahkamari, S. Emmanuel, D.B. Hodge, M. Nejad, Lignin-glyoxal: a fully biobased formaldehyde-free wood adhesive for interior engineered wood products. Chem. Eng. 10(11), 3430–3441 (2022)

    CAS  Google Scholar 

  40. I. Van Nieuwenhove, T. Renders, J. Lauwaert, T. De Roo, J. De Clercq, A. Verberckmoes, Biobased resins using lignin and glyoxal. ACS Sustain. Chem. Eng. 8(51), 18789–18809 (2020)

    Article  Google Scholar 

  41. H. Zhang, P. Liu, S.M. Musa, C. Mai, K. Zhang, Dialdehyde cellulose as a bio-based robust adhesive for wood bonding. ACS Sustain. Chem. Eng. 7(12), 10452–10459 (2019)

    Article  CAS  Google Scholar 

  42. P. Li, Y. Wu, Y. Zhou, Y. Zuo, Preparation and characterization of resorcinol-dialdehyde starch-formaldehyde copolycondensation resin adhesive. Int. J. Biol. Macromol. 127, 12–17 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. N.A. Aziz, A.F.A. Latip, L.C. Peng, N.H.A. Latif, N. Brosse, R. Hashim, M.H. Hussin, Reinforced lignin-phenol-glyoxal (LPG) wood adhesives from coconut husk. Int. J. Biol. Macromol. 141, 185–196 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. A.N. Wilson, M.J. Price, C. Mukarakate, R. Katahira, M.B. Griffin, J.R. Dorgan, J. Olstad, K.A. Magrini, M.R. Nimlos, Integrated biorefining: coproduction of renewable resol biopolymer for aqueous stream valorization. ACS Sustain. Chem. Eng. 5(8), 6615–6625 (2017)

    Article  CAS  Google Scholar 

  45. J. Dai, N. Teng, Y. Peng, Y. Liu, L. Cao, J. Zhu, X. Liu, Biobased benzoxazine derived from daidzein and furfurylamine: microwave-assisted synthesis and thermal properties investigation. Chem. Sus. Chem. 11(18), 3175–3183 (2018)

    Article  CAS  Google Scholar 

  46. M. Han, S. You, Y. Wang, K. Zhang, S. Yang, Synthesis of highly thermally stable daidzein-based main-chain-type benzoxazine resins. Polymers-Basel. 11(8), 1341 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  47. K. Zhang, Y. Liu, M. Han, P. Froimowicz, Smart and sustainable design of latent catalyst-containing benzoxazine-bio-resins and application studies. Green Chem. 22(4), 1209–1219 (2020)

    Article  CAS  Google Scholar 

  48. B. Hao, R. Yang, K. Zhang, A naringenin-based benzoxazine with an intramolecular hydrogen bond as both a thermal latent polymerization additive and property modifier for epoxy resins. RSC Adv. 10(43), 25629–25638 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Du, G. Zhao, G. Shi, Y. Wang, W. Li, S. Ren, Effect of crosslink structure on mechanical properties, thermal stability and flame retardancy of natural flavonoid based epoxy resins. Eur. Polym. J. 162, 110898 (2022)

    Article  CAS  Google Scholar 

  50. Y. Oh, K.M. Lee, D. Jung, J.A. Chae, H.J. Kim, M. Chang, J.J. Park, H. Kim, Sustainable, naringenin-based thermosets show reversible macroscopic shape changes and enable modular recycling. Thermosets show reversible macroscopic shape changes and enable modular recycling. ACS. Macro. Lett. 8(3), 239–244 (2019)

    Article  CAS  PubMed  Google Scholar 

  51. J. Dai, Y. Peng, N. Teng, Y. Liu, C. Liu, X. Shen, S. Mahmud, J. Zhu, X. Liu, High-performing and fire-resistant biobased epoxy resin from renewable sources. ACS Sustain. Chem. Eng. 6(6), 7589–7599 (2018)

    Article  CAS  Google Scholar 

  52. C. Xu, Y. Xu, M. Chen, Y. Zhang, J. Li, Q. Gao, S.Q. Shi, Soy protein adhesive with bio-based epoxidized daidzein for high strength and mildew resistance. Chem. Eng. J. 390, 124622 (2020)

    Article  CAS  Google Scholar 

  53. C. Ma, J. Li, Synthesis of an organophosphorus flame retardant derived from daidzein and its application in epoxy resin. Compos. Part B-Eng. 178, 107471 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China, Innovative and Entrepreneurial Building Team Project of Jiangsu Province and New Green Materials Project of Hangmo New Materials Group Co., Ltd. The authors wish to express their appreciation to the Analytical Center at Jiangsu University for the measurements of samples.

Funding

National Natural Science Foundation of China (No. 20207003, No. 20704019, No. 51603093), Innovative and Entrepreneurial Building Team Project of Jiangsu Province (No. 2015026), Zhejiang South Taihu Lake Elite Program Leading Innovation Team Project (202001).

Author information

Authors and Affiliations

Authors

Contributions

Yuan Qin and Chunyu Xu wrote the main manuscript text. Zhenguo Hu, Yimiao Zhang and Yufei Jia participated in a part of the experimental works. Fuliang Meng, Songjun Li and Xinhua Yuan guided the design work of the scientific research program. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Fuliang Meng, Songjun Li or Xinhua Yuan.

Ethics declarations

Conflict of Interests

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Meng, F., Xu, C. et al. Preparation and Performance of Novel Flavonoid Phenols-Based Biomass-Modified Phenol Formaldehyde Resins. J Inorg Organomet Polym 33, 1817–1829 (2023). https://doi.org/10.1007/s10904-023-02619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02619-7

Keywords

Navigation