Skip to main content

Advertisement

Log in

Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Toward sustainability of polymer-matrix composites, this study aimed to prepare and evaluate glass fiber reinforced (GFR) biocomposites of fully bio-based furan resin, and their partial comparison with those from resole phenolic resin used commonly in composite industry. Thus, the bioresin, poly(furfuryl alcohol), PFA, was synthesized using a sulfonic acid catalyst. A furan biocomposite with a woven glass fiber (GF), modified by (3-aminopropyl)-triethoxysilane, and various percentages of talc filler were prepared. The mechanical properties of the GFR composite specimens were studied using three-point bending test, tensile test, and dynamic mechanical thermal analysis. Flexural strength was enhanced from 202 to 240 MPa by employing modified fibers, while using 1, 3 and 5 wt% of talc, it reached to 235, 252 and 228 MPa, respectively. Simultaneous use of the modified fibers and 3 wt% of talc significantly improved the flexural strength up to 327 MPa. The scanning electron microscope images evidently confirmed an increase in fiber-matrix adhesion in bioresins with modified fibers and talc. Thermogravimetric analysis established a promotion of thermal properties as a result of the apparent initial decomposition temperature, which was more obvious for the modified fiber containing biocomposites. Finally, the superiority of the bioresin was proved by comparing it to its petro-based counterpart in acidic, basic, and organic solvents. Thus, in many common uses, the inexpensive sustainable PFA bioresin can be considered as a promising alternative to a non-sustainable phenolic resin originated from petroleum resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kheirkhah Barzoki P, Rezadoust AM, Latifi M, Saghafi H (2018) The experimental and numerical study on the effect of PVB nanofiber mat thickness on interlaminar fracture toughness of glass/phenolic composites. Eng Fract Mech 194:145–153

    Article  Google Scholar 

  2. Kheirkhah Barzoki P, Rezadoust AM, Latifi M (2018) Tunable effect of polyvinyl butyral nanofiber veil on fracture toughness of glass reinforced phenolic composites manufactured with out of autoclave method. Polym Test 71:255–261

    Article  CAS  Google Scholar 

  3. Ipakchi H, Rezadoust AM, Esfandeh M, Mirshekar H (2019) Modeling and optimization of electrospinning conditions of PVB nanofiber by RSM and PSO-LSSVM models for improved interlaminar fracture toughness of laminated composites. J Compos Mater 54:363–378

    Article  CAS  Google Scholar 

  4. Mallikarachchi HMYC (2019) Predicting mechanical properties of thin woven carbon fiber reinforced laminates. Thin-Walled Struct 135:297–305

    Article  Google Scholar 

  5. Kheirkhah Barzoki P, Rezadoust AM, Latifi M, Saghafi H, Minak G (2019) Effect of nanofiber diameter and arrangement on fracture toughness of out of autoclave glass/phenolic composites—Experimental and numerical study. Thin-Walled Struct 143:106251

    Article  Google Scholar 

  6. Ipakchi H, Rezadoust AM, EsfandehM RezaeiM (2019) Improvement of interlaminar fracture toughness of phenolic laminates interleaved with electrospun polyvinyl butyral nanofibers. Theor Appl Fract Mech 105:102406

    Article  CAS  Google Scholar 

  7. O’Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145

    Article  CAS  Google Scholar 

  8. Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crops Prod 8:105–112

    Article  CAS  Google Scholar 

  9. Russo P, Simeoli G, Vitiello L, Filippone G (2019) Bio-polyamide 11 hybrid composites reinforced with basalt/flax interwoven fibers: a tough green composite for semi-structural applications. Fibers 7:41

    Article  CAS  Google Scholar 

  10. Fam A, Eldridge A, Misra M (2014) Mechanical characteristics of glass fibre reinforced polymer made of furfuryl alcohol bio-resin. Mater Struct Constr 47:1195–1204

    Article  CAS  Google Scholar 

  11. Adekunle K, Cho SW, Patzelt C, Blomfeldt T, Skrifvars M (2011) Impact and flexural properties of flax fabrics and Lyocell fiber-reinforced bio-based thermoset. J Reinf Plast Compos 30:685–697

    Article  CAS  Google Scholar 

  12. Espinosa M, Valencia BAR, MorenoContreras GG (2019) Physical-mechanical characterization of moriche natural fibre (Mauritia flexuosa) and composite with bio-epoxy resin. J Mech Eng 65:181–188

    Article  Google Scholar 

  13. Maino A, Janszen G, Di Landro L (2019) Glass/epoxy and hemp/bio based epoxy composites: manufacturing and structural performances. Polym Compos 40:723–731

    Article  CAS  Google Scholar 

  14. Jiang L, Walczyk D, McIntyre G, Bucinell R, Li B (2019) Bioresin infused then cured mycelium-based sandwich-structure biocomposites: resin transfer molding (RTM) process, flexural properties, and simulation. J Clean Prod 207:123–135

    Article  CAS  Google Scholar 

  15. Khot SN, Lascala JJ, Can E, Morye SS, Williams GI, Palmese GR, Kusefoglu SH, Wool RP (2001) Development and application of triglyceride-based polymers and composites. J Appl Polym Sci 82:703–723

    Article  CAS  Google Scholar 

  16. Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) Fracture toughness and impact strength of anhydride-cured biobased epoxy. Polym Eng Sci 45:487–495

    Article  CAS  Google Scholar 

  17. Petrović ZS, Cevallos MJ, Javni I, Schaefer DW, Justice R (2005) Soy-oil-based segmented polyurethanes. J Polym Sci Part B: Polym Phys 43:3178–3190

    Article  CAS  Google Scholar 

  18. Lu J, Khot S, Wool RP (2005) New sheet molding compound resins from soybean oil I Synthesis and characterization. Polymer (Guildf) 46:71–80

    Article  CAS  Google Scholar 

  19. Li F, Hasjim J, Larock RC (2003) Synthesis, structure, and thermophysical and mechanical properties of new polymers prepared by the cationic copolymerization of corn oil, styrene, and divinylbenzene. J Appl Polym Sci 90:1830–1838

    Article  CAS  Google Scholar 

  20. Casado U, Marcovich NE, Aranguren MI, Mosiewicki MA (2009) High-strength composites based on tung oil polyurethane and wood flour: effect of the filler concentration on the mechanical properties. Polym Eng Sci 49:713–721

    Article  CAS  Google Scholar 

  21. Hu Q, Fan G, Yang L, Cao X, Zhang P, Wang B, Li F (2016) A gas-phase coupling process for simultaneous production of γ-butyrolactone and furfuryl alcohol without external hydrogen over bifunctional base-metal heterogeneous catalysts. Green Chem 18:2317–2322

    Article  CAS  Google Scholar 

  22. Seo G, Chon H (1981) Hydrogenation of furfural over copper-containing catalysts. J Catal 67:424–429

    Article  CAS  Google Scholar 

  23. Furfural market growth, segment, trends by 2022. https://atozresearch.com/chemical-materials/furfural-market-share-growth-by-2022/

  24. (2020) Furfural market size growth and value-industry research report. https://www.grandviewresearch.com/industry-analysis/furfural-market

  25. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  26. Ciaran M, Amir F (2016) Tensile properties retention of aged carbon-FRP sheets made of fully and partially bio-based resins and conventional epoxy. Polym Compos 39:2081–2092

    Google Scholar 

  27. Amanda E, Amir F (2014) Environmental aging effect on tensile properties of GFRP made of furfuryl alcohol bioresin compared to epoxy. J Compos Constr 18:401–410

    Google Scholar 

  28. Domínguez JC, Madsen B (2015) Development of new biomass-based furan/glass composites manufactured by the double-vacuum-bag technique. J Compos Mater 49:2993–3003

    Article  CAS  Google Scholar 

  29. Choura M, Belgacem NM, Gandini A (1996) Acid-catalyzed polycondensation of furfuryl alcohol: mechanisms of chromophore formation and cross-linking. Macromolecules 29:3839–3850

    Article  CAS  Google Scholar 

  30. Mohajeri S, Zohuriaan-Mehr MJ, Pazokifard S (2017) Epoxy matrix toughness improvement via reactive bio-resin alloying. High Perform Polym 29:772–784

    Article  CAS  Google Scholar 

  31. González R, Rieumont J, Figueroa JM, Siller J, González H (2002) Kinetics of furfuryl alcohol polymerisation by iodine in methylene dichloride. Eur Polym J 38:281–286

    Article  Google Scholar 

  32. Bertarione S, Bonino F, Cesano F, Jain S, Zanetti M, Scarano D, Zecchina A (2009) Micro-FTIR and micro-raman studies of a carbon film prepared from furfuryl alcohol polymerization. J Phys Chem B 113:10571–10574

    Article  CAS  PubMed  Google Scholar 

  33. Janus R, Wach A, Kuśtrowski P, Dudek B, Drozdek M, Silvestre-Albero AM, Rodríguez-Reinoso F, Cool P (2013) Investigation on the low-temperature transformations of poly(furfuryl alcohol) deposited on MCM-41. Langmuir 29:3045–3053

    Article  CAS  PubMed  Google Scholar 

  34. Lung CYK, Matinlinna JP (2012) Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater 28:467–477

    Article  CAS  PubMed  Google Scholar 

  35. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A: Appl Sci Manuf 41:806–819

    Article  CAS  Google Scholar 

  36. Park SJ, Jin JS, Lee JR (2000) Influence of silane coupling agents on the surface energetics of glass fibers and mechanical interfacial properties of glass fiber-reinforced composites. J Adhes Sci Technol 14:1677–1689

    Article  CAS  Google Scholar 

  37. Petersen H, Kusano Y, Brøndsted P, Almdal K (2013) Preliminary characterization of glass fiber sizing. Proc 34th Risø Int Symp Mater Sci 34:333–340

  38. Eskizeybek V, Avcı A, Gülce A (2017) Preparation and mechanical properties of carbon nanotube grafted glass fabric/epoxy multi-scale composites. Adv Compos Mater 26:169–180

    Article  CAS  Google Scholar 

  39. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588

    Article  CAS  Google Scholar 

  40. Sever K, Sarikanat M, Seki Y, Cecen V, Tavman IH (2008) Effects of fiber surface treatments on mechanical properties of epoxy composites reinforced with glass fabric. J Mater Sci 43:4666–4672

    Article  CAS  Google Scholar 

  41. Lapcik L, Jindrova P, Lapcikova B, Tamblyn R, Greenwood R, Rowson N (2008) Effect of the talc filler content on the mechanical properties of polypropylene composites. J Appl Polym Sci 110:2742–2747

    Article  CAS  Google Scholar 

  42. Rajanish M, Nanjundaradhya NV, Sharma RS (2014) Influence of nano-modification on the interlaminar shear strength of unidirectional glass fiber-reinforced epoxy resin. J Miner Mater Charact Eng 2:264–269

    Google Scholar 

  43. Hadal RS, Dasari A, Rohrmann J, Misra RDK (2004) Effect of wollastonite and talc on the micromechanisms of tensile deformation in polypropylene composites. Mater Sci Eng A 372:296–315

    Article  CAS  Google Scholar 

  44. Huda MS, Drzal LT, Mohanty AK, Misra M (2007) The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos Part B Eng 38:367–379

    Article  CAS  Google Scholar 

  45. Nairn JA (1997) On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech Mater 26:63–80

    Article  Google Scholar 

  46. Hanifpour A, Miraghaie S, Zohuriaan-Mehr MJ, Behzadnasab M, Bahri-Laleh N (2019) Poly(furfuryl alcohol) bioresin-modified LY5210 epoxy thermosets. J Polym Res 26:198

    Article  CAS  Google Scholar 

  47. Laza JM, Alonso J, Vilas JL, Rodríguez M, León LM, Gondra K, Ballestero J (2008) Influence of fillers on the properties of a phenolic resin cured in acidic medium. J Appl Polym Sci 108:387–392

    Article  CAS  Google Scholar 

  48. McIntyre S, Kaltzakorta I, Liggat JJ, Pethrick RA, Rhoney I (2005) Influence of the epoxy structure on the physical properties of epoxy resin nanocomposites. Ind Eng Chem Res 44:8573–8579

    Article  CAS  Google Scholar 

  49. Guigo N, Mija A, Vincent L, Sbirrazzuoli N (2010) Eco-friendly composite resins based on renewable biomass resources: polyfurfuryl alcohol/lignin thermosets. Eur Polym J 46:1016–1023

    Article  CAS  Google Scholar 

  50. Pape PG, Plueddemann EP (1991) Methods for improving the performance of silane coupling agents. J Adhes Sci Technol 5:831–842

    Article  CAS  Google Scholar 

  51. Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. In: Monomers, Polym. Compos. from Renew. Resour., 1st ed. Elsevier, New York, 23:115–125

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jalal Zohuriaan-Mehr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipakchi, H., Shegeft, A., Rezadoust, A.M. et al. Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites. Iran Polym J 29, 287–299 (2020). https://doi.org/10.1007/s13726-020-00793-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00793-w

Keywords

Navigation