Skip to main content
Log in

Composite Nanoarchitectonics of Cellulose with Porphyrin-Zn for Antibacterial Properties

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Antibiotic-resistant bacteria (ARB) are one of the factors that cause human diseases and endanger public health and social security. Attenuating bacterial membranes and metabolism by porous cellulose is a sustainable strategy for the treating bacterially contaminated water. Herein, a photoresponsive fiber (CEL-THPP) was synthesized by the covalent coupling of cellulose with porphyrin derivatives (THPP). The coordination of the Zn(II) ion with CEL-THPP induced the self-assembly of CEL-THPP producing CEL-THPP@Zn with a pore volume of 0.016 cm3/g. CEL-THPP@Zn is a porous rod-like structure fiber. Interestingly, CEL-THPP@Zn exhibits strong fluorescence emission at 662 nm in solid with an optical band gap of 1.69 eV. Moreover, CEL-THPP@Zn exhibited excellent inhibitory and adsorption effects on both Escherichia coli and Staphylococcus aureus. Therefore, this study provides a novel method for the preparation of mesoporous fibers, and the CEL-THPP@Zn can be applied to bacterial inhibition and filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Herraiz-Carboné, S. Cotillas, E. Lacasa, C.S. Baranda, E. Riquelme, P. Cañizares, M.A. Rodrigo, C. Sáez, Are we correctly targeting the research on disinfection of antibiotic-resistant bacteria (ARB)? J. Clean. Prod. 320, 128865 (2021). https://doi.org/10.1016/j.jclepro.2021.128865

    Article  Google Scholar 

  2. Y. Zhan, S. Yu, A. Amirfazli, A.R. Siddiqui, W. Li, Recent advances in antibacterial superhydrophobic coatings. Adv. Eng. Mater. 24, 2101053 (2022). https://doi.org/10.1002/adem.202101053

    Article  CAS  Google Scholar 

  3. A. Fatima, S. Yasir, M. Ul-Islam, T. Kamal, M.W. Ahmad, Y. Abbas, S. Manan, M.W. Ullah, G. Yang, Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv. Compos. Hybrid Mater. 5, 307–321 (2022). https://doi.org/10.1007/s42114-021-00369-z

    Article  CAS  Google Scholar 

  4. H. Ahmad, Celluloses as support materials for antibacterial agents: a review. Cellulose 28, 2715–2761 (2021). https://doi.org/10.1007/s10570-021-03703-2

    Article  CAS  Google Scholar 

  5. T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu, C. Driemeier, J. Dai, O.J. Rojas, A. Isogai, L. Wågberg, L. Hu, Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7

    Article  CAS  Google Scholar 

  6. D. Pan, G. Yang, H.M. Abo-Dief, J.W. Dong, F.M. Su, Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  7. K. Ariga, R. Fakhrullin, Materials nanoarchitectonics from atom to living cell: a method for everything. Bull. Chem. Soc. Jpn. 95, 774–795 (2022). https://doi.org/10.1246/bcsj.20210234

    Article  CAS  Google Scholar 

  8. J. Yan, Y.F. Niu, C.H. Wu, Z.J. Shi, P. Zhao, N. Naik, X.M. Mai, B.N. Yuan, Antifungal effect of seven essential oils on bamboo. Adv. Compos. Hybrid Mater. 4, 552–561 (2021). https://doi.org/10.1007/s42114-021-00251-y

    Article  CAS  Google Scholar 

  9. R. Jia, W. Tian, H. Bai, J. Zhang, S. Wang, J. Zhang, Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 10, 795 (2019). https://doi.org/10.1038/s41467-019-08675-3

    Article  CAS  Google Scholar 

  10. L. Hernandez-Adame, F. Ruvalcaba, M.A. Ruíz-Gómez, V. Sánchez, M. Reyes-Becerril, J. Silva-Jara, C. Angulo, Biological synthesis of monodisperse AuNPs@Damiana with enhanced antiseptic activity against Gram-negative bacteria. J. Inorg. Organomet. Poly Mater. 31, 4018–4024 (2021). https://doi.org/10.1007/s10904-021-02017-x

    Article  CAS  Google Scholar 

  11. M. Onyszko, A. Markowska-Szczupak, R. Rakoczy, O. Paszkiewicz, J. Janusz, A. Gorgon-Kuza, K. Wenelska, E. Mijowska, The cellulose fibers functionalized with star-like zinc oxide nanoparticles with boosted antibacterial performance for hygienic products. Sci. Rep. 12, 1321 (2022). https://doi.org/10.1038/s41598-022-05458-7

    Article  CAS  Google Scholar 

  12. W. Wang, J. Wang, Q.Y. Chen, Q.S. Liu, X. Liang, A photo-responsive porphyrin-Mn@choles complex for bacteria treatment. J. Inorg. Organamet. Poly Mater. 32, 1177–1182 (2022). https://doi.org/10.1007/s10904-021-02148-1

    Article  CAS  Google Scholar 

  13. Y.I. Openda, P. Sen, M. Managa, T. Nyokong, Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. Photodiag. Photodyn. Therapy 29, 101607 (2020). https://doi.org/10.1016/j.pdpdt.2019.101607

    Article  CAS  Google Scholar 

  14. Z. Wang, Q. Sun, B. Liu, Y. Kuang, A. Gulzar, F. He, S. Gai, P. Yang, J. Lin, Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord. Chem. Rev. 439, 213945 (2021). https://doi.org/10.1016/j.ccr.2021.213945

    Article  CAS  Google Scholar 

  15. G.M.A. Ndong Ntoutoume, R. Granet, J.-P. Mbakidi, E. Constantin, L. Bretin, D.Y. Léger, B. Liagre, V. Chaleix, F. Brégier, V. Sol, Design and synthesis of zinc protoporphyrin IX-adamantane/cyclodextrin/cellulose nanocrystals complexes for anticancer photodynamic therapy. Bioorg. Med. Chem. Lett. 41, 128024 (2021). https://doi.org/10.1016/j.bmcl.2021.128024

    Article  CAS  Google Scholar 

  16. J. Shao, P.Z. Huang, Q.Y. Chen, Q.L. Zheng, Nano adamantane-conjugated BODIPY for lipase affinity and light driven antibacterial. Spectrochim. Acta Part A 234, 118252 (2020). https://doi.org/10.1016/j.saa.2020.118252

    Article  CAS  Google Scholar 

  17. Y. Feng, C. Coradi Tonon, S. Ashraf, T. Hasan, Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Adv. Drug Deliv. Rev. 177, 113941 (2021). https://doi.org/10.1016/j.addr.2021.113941

    Article  CAS  Google Scholar 

  18. P.R. Judzewitsch, N. Corrigan, E.H.H. Wong, C. Boyer, Photo-enhanced antimicrobial activity of polymers containing an embedded photosensitiser. Angew. Chem. Int. Ed. 60, 24248–24256 (2021). https://doi.org/10.1002/anie.202110672

    Article  CAS  Google Scholar 

  19. J.Y. Lu, P.L. Zhang, Q.Y. Chen, A nano-BODIPY encapsulated zeolitic imidazolate framework as photoresponsive integrating antibacterial agent. ACS Appl. Bio Mater. 3, 458–465 (2020). https://doi.org/10.1021/acsabm.9b00905

    Article  CAS  Google Scholar 

  20. Z.H. Mazumdar, D. Sharma, A. Mukherjee, S. Basu, P.K. Shukla, T. Jha, D. Sengupta, Meso-thiophenium porphyrins and their Zn(II) complexes: a new category of cationic photosensitizers. ACS Med. Chem. Lett. 11, 2041–2047 (2020). https://doi.org/10.1021/acsmedchemlett.0c00266

    Article  CAS  Google Scholar 

  21. A.M. Youssef, S.M. El-Sayed, Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr. Polym. 193, 19–27 (2018). https://doi.org/10.1016/j.carbpol.2018.03.088

    Article  CAS  Google Scholar 

  22. J. Strätz, A. Liedmann, T. Heinze, S. Fischer, T. Groth, Effect of sulfation route and subsequent oxidation on derivatization degree and biocompatibility of cellulose sulfates. Macromol. Biosci. 20, 1900403 (2020). https://doi.org/10.1002/mabi.201900403

    Article  CAS  Google Scholar 

  23. W.Y. Mu, R. Akrofi, Q.Y. Chen, Near-infrared-driven Au-decorated polymer–metal protein microfibers with bacterial filtration ability for use in photothermal sterilization. Chem. Eng. J. 388, 124236 (2020). https://doi.org/10.1016/j.cej.2020.124236

    Article  CAS  Google Scholar 

  24. Y. Yang, Q. Huang, W. Ge, J. Ren, T. Heinze, X. Wang, Green fabrication of highly conductive paper electrodes via interface engineering with aminocellulose. Macromol. Rapid Commun. 42, 2000499 (2021). https://doi.org/10.1002/marc.202000499

    Article  CAS  Google Scholar 

  25. H. Gu, C. Gao, X. Zhou, A. Du, N. Naik, Z. Guo, Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater. 4, 459–468 (2021). https://doi.org/10.1007/s42114-021-00289-y

    Article  CAS  Google Scholar 

  26. B. Pang, H. Zhang, M. Schilling, H. Liu, X. Wang, F. Rehfeldt, K. Zhang, High-internal-phase pickering emulsions stabilized by polymeric dialdehyde cellulose-based nanoparticles. ACS Sustain. Chem. Eng. 8, 7371–7379 (2020). https://doi.org/10.1021/acssuschemeng.0c01116

    Article  CAS  Google Scholar 

  27. K. Qu, Z. Sun, C. Shi, W. Wang, L. Xiao, J. Tian, Z. Huang, Z. Guo, Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)-derived polyhedral porous Co3O4 for symmetric supercapacitors. Adv. Compos. Hybrid Mater. 4, 670–683 (2021). https://doi.org/10.1007/s42114-021-00293-2

    Article  CAS  Google Scholar 

  28. S. Jayakumar, H. Li, J. Chen, Q. Yang, Cationic Zn–porphyrin polymer coated onto CNTs as a cooperative catalyst for the synthesis of cyclic carbonates. ACS Appl. Mater. Interfaces 10, 2546–2555 (2018). https://doi.org/10.1021/acsami.7b16045

    Article  CAS  Google Scholar 

  29. L. Liu, S. Jayakumar, J. Chen, L. Tao, H. Li, Q. Yang, C. Li, Synthesis of bifunctional porphyrin polymers for catalytic conversion of dilute CO2 to cyclic carbonates. ACS Appl. Mater. Interfaces 13, 29522–29531 (2021). https://doi.org/10.1021/acsami.1c04624

    Article  CAS  Google Scholar 

  30. X. Kang, X. Han, C. Yuan, C. Cheng, Y. Liu, Y. Cui, Reticular synthesis of tbo topology covalent organic frameworks. J. Am. Chem. Soc. 142, 16346–16356 (2020). https://doi.org/10.1021/jacs.0c06605

    Article  CAS  Google Scholar 

  31. H.P. Wang, H.L. Wang, B.L. Li, Synthesis, structure, luminescence and thermal stability properties of a new (3,4)-connected 2D Zn coordination polymer. Chin. J. Struct. Chem. 39, 1835–1840 (2020). https://doi.org/10.14102/j.cnki.0254-5861.2011-2708

    Article  CAS  Google Scholar 

  32. I.E. Kolesnikov, M.A. Kurochkin, I.N. Meshkov, R.A. Akasov, A.A. Kalinichev, EYu. Kolesnikov, Y.G. Gorbunova, E. Lähderanta, Water-soluble multimode fluorescent thermometers based on porphyrins photosensitizers. Mater. Des. 203, 109613 (2021). https://doi.org/10.1016/j.matdes.2021.109613

    Article  CAS  Google Scholar 

  33. Y. Ding, W.H. Zhu, Y. Xie, Development of ion chemosensors based on porphyrin analogues. Chem. Rev. 117, 2203–2256 (2017). https://doi.org/10.1021/acs.chemrev.6b00021

    Article  CAS  Google Scholar 

  34. Y. Chen, S. Yang, Z. Qiu, Y. Li, F. Qiu, T. Zhang, Fabrication of flexible AgNW/cellulose hybrid film with heat preservation and antibacterial properties for agriculture application. Cellulose 28, 8693–8704 (2021). https://doi.org/10.1007/s10570-021-04097-x

    Article  CAS  Google Scholar 

  35. A. Wang, L. Cheng, X. Shen, X. Chen, W. Zhu, W. Zhao, C. Lv, Porphyrin coordination polymer/Co1xS composite electrocatalyst for efficient oxygen evolution reaction. Chem. Eng. J. 400, 125975 (2020). https://doi.org/10.1016/j.cej.2020.125975

    Article  CAS  Google Scholar 

  36. W.Y. Mu, W. Wang, Q.Y. Chen, L.L. Qu, Polymer fused GOFe: light-driven oxygen donor and antiseptics. J. Photochem. Photobiol. Chem. 408, 113075 (2021). https://doi.org/10.1016/j.jphotochem.2020.113075

    Article  CAS  Google Scholar 

  37. T.H.S. Souza, J.F. Sarmento-Neto, S.O. Souza, B.L. Raposo, B.P. Silva, C.P.F. Borges, B.S. Santos, P.E.C. Filho, J.S. Rebouças, A. Fontes, Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. J. Photochem. Photobiol. C 49, 100454 (2021). https://doi.org/10.1016/j.jphotochemrev.2021.100454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of National Natural Science Foundation of China (21571085).

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 21571085).

Author information

Authors and Affiliations

Authors

Contributions

Jun Wang: Methodology, Data Analysis, Writing and Original draft preparation; Kai Wu and Cai-Hua Chen: Methodology, Data Analysis; Qiu-Yun Chen: Supervision, Conceptualization, Writing Reviewing and Editing; Qing-Shan Liu: Writing Reviewing and Editing.

Corresponding author

Correspondence to Qiu-Yun Chen.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 93667 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, K., Chen, CH. et al. Composite Nanoarchitectonics of Cellulose with Porphyrin-Zn for Antibacterial Properties. J Inorg Organomet Polym 33, 207–215 (2023). https://doi.org/10.1007/s10904-022-02496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02496-6

Keywords

Navigation