Skip to main content
Log in

A Photo-Responsive Porphyrin-Mn@Choles Complex for Bacteria Treatment

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Biocompatible photo-driven producers of singlet oxygen can inhibit the growth of drug-resistant bacteria and tumors. In order to develop bacteria targeting generator of singlet oxygen for tumor and bacterial treatment, a metal porphyrin liposome (Phy–Mn–Ls) was prepared by the metal coordination reaction and self-assembly of porphyrin compounds with bacteria targeting polymer (HS–PEG–chol). The photo-driven production of 1O2, binding with bovine serum protein (BSA) and lipase, toxicity to MCF-7 breast cancer cells and inhibitory effect on the growth of Escherichia coli have been investigated. Fluorescence analysis results show that Phy–Mn–Ls can bind to lipase, and it shows less effect on the conformation of BSA and is low cytotoxicity without irradiation. In particular, the good biocompatibility made Phy–Mn–Ls exhibit good photosensitive antibacterial activity and anti-tumor properties. The results demonstrate that the coordination of HS–PEG–chol with metal-phorphrin coodination is an effective way to develop bacteria targeting nano-complexes (Phy–Mn–Ls) for lipase affinity and photodriven bacteria treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. M.I. Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai, M. Megharaj, Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total Environ. 711, 134612 (2020)

    Article  Google Scholar 

  2. A.M. Meireles, A.L.A. Lage, J.M. Ribeiro, M.P.N. Silva, E.M. Souza-Fagundes, D.C.S. Martins, Martins, synthetic Mn(III) porphyrins as biomimetic catalysts of CYP450: degradation of antibiotic norfloxacin in aqueous medium. Environ. Res. 177, 108615 (2019). https://doi.org/10.1016/j.envres.2019.108615

    Article  CAS  PubMed  Google Scholar 

  3. W.Y. Mu, A. Robertson, Q.Y. Chen, Near-infrared-driven Au-decorated polymer-metal protein microfibers with bacterial filtration ability for use in photothermal sterilization. Chem. Eng. J. 388, 124236 (2020). https://doi.org/10.1016/j.cej.2020.124236

    Article  CAS  Google Scholar 

  4. J.Y. Li, W. Sun, Z.H.Y. Yang, G. Gao, H.H. Ran, K.F. Xu, Q.Y. Duan, X.Y. Liu, F.G. Wu, Rational design of self-assembled cationic porphyrin-based nanoparticles for efficient photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces 12, 54378–54386 (2020). https://doi.org/10.1021/acsami.0c15244

    Article  CAS  PubMed  Google Scholar 

  5. W.Y. Mu, W. Wang, Q.Y. Chen, L.L. Qu, Polymer fused GoFe: light-driven oxygen donor and antiseptics. Photochem. Photobiol. A Chem. 408, 113075 (2021). https://doi.org/10.1016/j.jphotochem.2020.113075

    Article  CAS  Google Scholar 

  6. A. Frei, J. Zuegg, A.G. Elliott, M. Baker, S. Braese, C. Brown, F. Chen, C.G. Dowson, G. Dujardin, N. Jung, A.P. King, A.M. Mansous, M. Massi, J. Moat, H.A. Mohamed, A.K. Renfrew, P.J. Rutledge, P.J. Sadler, M.H. Todd, C.E. Willans, J.J. Wilson, M.A. Cooper, M.A.T. Blaskovich, Metal complexes as a promising source for new antibiotics. Chem. Sci. 11, 2627–2639 (2020). https://doi.org/10.1039/C9SC06460E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. Cossu, F. Dou, G.M. Young, N. Nitin, Biomarkers of oxidative damage in bacteria for the assessment of sanitation efficacy in lettuce wash water. Appl. Microbiol. Biotechnol. 101, 5365–5375 (2017). https://doi.org/10.1007/s00253-017-8314-5

    Article  CAS  PubMed  Google Scholar 

  8. H.P. Wang, H.L. Wang, B.L. Li, Synthesis, structure, luminescence and thermal stability properties of a new (3,4)-connected 2D Zn coordination polymer. Chin. J. Struct. Chem. 39, 1835–1840 (2020). https://doi.org/10.14102/j.cnki.0254-5861.2011-2708

    Article  CAS  Google Scholar 

  9. X.L. Fang, R. Akrofi, Q.Y. Chen, The NIR inspired nano-CuSMn(II) composites for lactate and glycolysis attenuation. Colloids Surf. B Biointerfaces 181, 728–733 (2019)

    Article  CAS  Google Scholar 

  10. I.K. Attatsi, W. Zhu, X. Liang, Surface molecular engineering of axial-exchanged Fe(III)Cl- and Mn(III)Cl- porphyrins towards enhanced electrocatalytic ORRs and OERs. Inorg. Chim. Acta 507, 119584 (2020). https://doi.org/10.1016/j.ica.2020.119584

    Article  CAS  Google Scholar 

  11. W.L. Lu, Y.Q. Lan, K.J. Xiao, Q.M. Xu, L.L. Qu, Q.Y. Chen, T. Huang, J. Gao, Y. Zhao, BODIPY-Mn nanoassemblies for accurate MRI and phototherapy of hypoxia cancer. J. Mater. Chem. B 5, 1275–1283 (2017). https://doi.org/10.1039/cbtb02575g

    Article  CAS  PubMed  Google Scholar 

  12. L. Zhao, Q. Xu, Z. Shao, Y. Chen, Z. Xue, H. Li, J. Zhang, Enhanced oxygen reduction reaction performance using intermolecular forces coupled with more exposed molecular orbitals of triphenylamine in co-porphyrin electrocatalysts. ACS Appl. Mater. Interfaces 12, 45976–45986 (2020). https://doi.org/10.1021/acsami.oc.11742

    Article  CAS  PubMed  Google Scholar 

  13. H.Y. Gu, X.Y. Huang, Q.S. Chen, Y.H. Sun, Rapid assessment of total polar material in used frying oils using manganese tetraphenylporphyrin fluorescent sensor with enhanced sensitivity. Food Anal. Methods 13, 2080–2086 (2020)

    Article  Google Scholar 

  14. Z.H. Li, X.C. Zhou, J.Y. Shi, X.B. Zou, X.W. Huang, T.H. Tahir, Preparation of conducting polyaniline/protoporphyrin composites and their application for sensing VOCs. Food Chem. 276, 291–297 (2019). https://doi.org/10.1016/j.foodchem.2018.10.029

    Article  CAS  PubMed  Google Scholar 

  15. A. Wang, L. Cheng, X. Shen, X. Chen, W. Zhu, W. Zhao, C. Lv, Porphyrin coordination polymer/Co1-xS composite electrocatalyst for efficient oxygen evolution reaction. Chem. Eng. J. 400, 125975 (2020). https://doi.org/10.1016/j.cej.2020.125975

    Article  CAS  Google Scholar 

  16. R. Yang, W.Y. Mu, Q.Y. Chen, Q. Wang, J. Gao, Smart magnetic nanoaptamer: construction, subcellular distribution, and silencing HIF for cancer gene therapy. ACS Biomater. Sci. Eng. 4, 2606–2613 (2018). https://doi.org/10.1021/acsbiomaterials.8b00204

    Article  CAS  PubMed  Google Scholar 

  17. Y.I. Openda, P. Sen, M. Managa, T. Nyokong, Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. Photodiag. Photodyn. Ther. 29, 101607 (2020). https://doi.org/10.1016/j.pdpdt.2019.101607

    Article  CAS  Google Scholar 

  18. J. Shao, P.Z. Huang, Q.Y. Chen, Q.L. Zheng, Nano adamantane-conjugated BODIPY for lipase affinity and light driven antibacterial. Spectrochim Acta A Biomol. Spectros. 234, 118252 (2020). https://doi.org/10.1016/j.saa.2020.118252

    Article  CAS  Google Scholar 

  19. T.M. Allen, P.R. Cullis, Liposomal drug delivery systems: from concept to clinical applications. Drug Deliv. Rev. 65, 36–48 (2013)

    Article  CAS  Google Scholar 

  20. H.R. Jia, Y.X. Zhu, Z. Chen, F.G. Wu, Cholesterol-assisted bacterial cell surface engineering for photodynamic inactivation of gram-positive and gram-negative bacteria. ACS Appl. Mater. Interfaces 9, 15943–15951 (2017). https://doi.org/10.1021/acsami.7b02562

    Article  CAS  PubMed  Google Scholar 

  21. J.M. Hendersona, N.S. Iyengara, K.L.H. Lamb, E. Maldonadoa, T. Suwattheea, I. Royc, A.J. Waringd, K.Y.C. Lee, Beyond electrostatics: antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity. BBA Biomembrane 1861, 182977 (2019). https://doi.org/10.1016/j.bbamem.2019.04.011

    Article  CAS  Google Scholar 

  22. S. Mathew, M.R. Johnston, The synthesis and characterization of a free-base porphyrin–perylene dyad that exhibits electronic coupling in both the ground and excited states. Chem. Eur. J. 15, 248–225 (2009). https://doi.org/10.1002/chem.200801779

    Article  CAS  PubMed  Google Scholar 

  23. M.D. Hartle, M.R. Tillotson, J.S. Prell, M.D. Pluth, Spectroscopic investigation of the reaction of metallo-protoporphyrins with hydrogen sulfide. J. Inorg. Biochem. 173, 152–157 (2017). https://doi.org/10.1016/j.jinorgbio.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  24. T. Hashimoto, Y.K. Choe, H. Nakano, K. Hirao, Theoretical study of the Q and B bands of free-base, magnesium, and zinc porphyrins, and their derivatives. J. Phys. Chem. 103, 1894–1904 (1999). https://doi.org/10.1021/jp984807d

    Article  CAS  Google Scholar 

  25. W.Y. Mu, R. Yang, R. Akrofi, Q.Y. Chen, A near-infrared BSA coated DNA-AgNCs for cellular imaging. Colloids Surf. B Biointerfaces 162, 427–431 (2018). https://doi.org/10.1016/j.colsurfb.2017.12.023

    Article  CAS  PubMed  Google Scholar 

  26. P.L. Zhang, Z.K. Wang, Q.Y. Chen, X. Du, J. Gao, Biocompatible-G-quadruplex/BODIPY assembly for cancer cell imaging and the attenuation of mitochondria. Bioorg. Med. Chem. Lett. 29, 1943–1947 (2019). https://doi.org/10.1016/j.bmcl.2019.05.043

    Article  CAS  PubMed  Google Scholar 

  27. T.H.S. Souza, J.F. Sarmento-Neto, S.O. Souza, B.L. Raposo, B.P. Silva, C.P.F. Borges, B.S. Santos, P.E.C. Filho, J.S. Rebouças, A. Fontes, Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. J. Photochem. Photobiol. C Photochem. Rev. 49, 100454 (2021). https://doi.org/10.1016/j.jphotochemrev.2021.100454

    Article  CAS  Google Scholar 

  28. P.R. Judzewitsch, N. Corrigan, E.H.H. Wong, C. Boyer, Photo-enhanced antimicrobial activity of polymers containing an embedded photosensitiser. Angew. Chem. Int. Ed. 60, 24248–24256 (2021). https://doi.org/10.1002/anie.202110672

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of National Natural Science Foundation of China (21571085, 21701056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Yun Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 994.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, J., Chen, QY. et al. A Photo-Responsive Porphyrin-Mn@Choles Complex for Bacteria Treatment. J Inorg Organomet Polym 32, 1177–1182 (2022). https://doi.org/10.1007/s10904-021-02148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02148-1

Keywords

Navigation