Skip to main content
Log in

Co/Ni/Al-LTH Layered Triple Hydroxides with Zeolitic Imidazolate Frameworks (ZIF-8) as High Efficient Removal of Diazinon from Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Today, high consumption and increasing use of pesticides and chemical fertilizers to control pests of agricultural products, and the entry of these pollutants into the environment, is one of the most important environmental and health problems. Their non-biodegradability, as well as their toxicity and carcinogenicity, have generally made these compounds one of the most dangerous pollutants that cause inevitable pollution of the environmental. Among the various methods used to remove agricultural pesticide residues from the water sources, the adsorption method has received more attention due to its simplicity, cost and higher efficiency. In this research, nanocomposite of Co/Ni/Al-LTH@ZIF-8 was synthesized by in-situ growth of ZIF-8 on the Co/Ni/Al-LTH and used for the removal of diazinon (DIZ) pesticide from aqueous solution. Characterizations of the nanocomposite were performed by various techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and thermal analysis. Statistical evaluation was studied by BOX-Behnken design. In addition, the response surface methodology was used to optimize the factors affecting on the adsorption process. Parameters such as adsorbent dose (mg), pH, and contact time (min) were considered in this experiment. The results showed that the removal efficiency of diazinon is improved significantly (from 64 to 84%) by loading ZIF-8 on Co/Ni/Al-LTH. Statistical studies showed the optimum conditions achieved under pH = 6.9, adsorbent dosage 25 mg, and contact time 12 min.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L.P.F. Benício, F.G. Pinto, J. Tronto, Layered double hydroxide nanocomposites for agricultural applications, in Layered double hydroxide polymer nanocomposites. ed. by S. Thomas, S. Daniel (Woodhead Publishing, Cambridge, 2020), pp.715–741

    Chapter  Google Scholar 

  2. J. Cornejo, R. Celis, L. Cox, M. Hermosin, Pesticide-clay interactions and formulations, in Clay surfaces: fundamentals and applications, interface science and technology. ed. by F. Wypych, K. Atyanarayana (Elselvier Academic Press, Anmsterdam, 2004), pp.247–266

    Chapter  Google Scholar 

  3. G. Lagaly, Pesticide-clay interactions and formulations. Appl. Clay Sci. 18, 205–209 (2001)

    Article  CAS  Google Scholar 

  4. M. Chowdhury, A. Zaman, S. Banik, B. Uddin, M. Moniruzzaman, N. Karim, S.H. Gan, Organophosphorus and carbamate pesticide residues detected in water samples collected from paddy and vegetable fields of the Savar and Dhamrai Upazilas in Bangladesh. Int. J. Environ. Res. Public Health 9(9), 3318–3329 (2012)

    Article  CAS  Google Scholar 

  5. G.L. Berg, C. Sine, R.T. Meister, J. Poplyk, Farm chemicals handbook (Meister Publishing Company, Willoughby, OH, 1986)

    Google Scholar 

  6. S.J. Garfitt, K. Jones, H.J. Mason, J. Cocker, Exposure to the organophosphate diazinon: data from a human volunteer study with oral and dermal doses. Toxicol. Lett. 134(1–3), 105–113 (2002)

    Article  CAS  Google Scholar 

  7. M.E. Báez, J. Espinoza, E. Fuentes, Degradation kinetics of chlorpyrifos and diazinon in volcanic and non-volcanic soils: influence of cyclodextrins. Environ. Sci. Pollut. Res. 25(25), 25020–25035 (2018)

    Article  Google Scholar 

  8. D. Khalafallah, C. Ouyang, M. Zhi, Z. Hong, Carbon anchored epitaxially grown nickel cobalt-based carbonate hydroxide for urea electrooxidation reaction with a high activity and durability. ChemCatChem 12(8), 2283–2294 (2020)

    Article  CAS  Google Scholar 

  9. D. Khalafallah, C. Ouyang, M. Zhi, Z. Hong, Heterostructured nickel-cobalt selenide immobilized onto porous carbon frameworks as an advanced anode material for urea electrocatalysis. ChemElectroChem 6(20), 5191–5202 (2019)

    Article  CAS  Google Scholar 

  10. D. Khalafallah, L. Xiaoyu, M. Zhi, Z. Hong, 3D hierarchical NiCo layered double hydroxide nanosheet arrays decorated with noble metal nanoparticles for enhanced urea electrocatalysis. ChemElectroChem 7(1), 163–174 (2020)

    Article  CAS  Google Scholar 

  11. D. Khalafallah, Q. Zou, M. Zhi, Z. Hong, Tailoring hierarchical yolk-shelled nickel cobalt sulfide hollow cages with carbon tuning for asymmetric supercapacitors and efficient urea electrocatalysis. Electrochim. Acta 350, 136399 (2020)

    Article  CAS  Google Scholar 

  12. D. Khalafallah, M. Zhi, Z. Hong, Recent trends in synthesis and investigation of nickel phosphide compound/hybrid-based electrocatalysts towards hydrogen generation from water electrocatalysis. Top. Curr. Chem. 377(6), 1–48 (2019)

    CAS  Google Scholar 

  13. G. Hosseini, A. Maleki, H. Daraei, E. Faez, Y.D. Shahamat, Electrochemical process for diazinon removal from aqueous media: design of experiments, optimization, and DLLME-GC-FID method for diazinon determination. Arab. J. Sci. Eng. 40(11), 3041–3046 (2015)

    Article  CAS  Google Scholar 

  14. A. Maleki, F. Moradi, B. Shahmoradi, R. Rezaee, S.M. Lee, The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate. J. Mol. Liq. 297, 111918 (2020)

    Article  CAS  Google Scholar 

  15. X. Dai, S. Wu, S. Li, Progress on electrochemical sensors for the determination of heavy metal ions from contaminated water. J. Chin. Adv. Mater. Soc. 6(2), 91–111 (2018)

    Article  CAS  Google Scholar 

  16. M. Cycoń, A. Żmijowska, M. Wójcik, Z. Piotrowska-Seget, Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J. Environ. Manage. 117, 7–16 (2013)

    Article  Google Scholar 

  17. S. Li, J. Singh, H. Li, I.A. Banerjee (eds.), Biosensor nanomaterials (Wiley, Hoboken, 2011)

    Google Scholar 

  18. H. Esfandian, A. Samadi-Maybodi, M. Parvini, B. Khoshandam, Development of a novel method for the removal of diazinon pesticide from aqueous solution and modeling by artificial neural networks (ANN). J. Ind. Eng. Chem. 35, 295–308 (2016)

    Article  CAS  Google Scholar 

  19. J. Shi, H. Zhang, Y. Yu, X. Zou, W. Zhou, J. Guo, Y. Ye, Y. Zhao, Adsorption properties of calcium alginate-silica dioxide hybrid adsorbent to methylene blue. J. Inorg. Organomet. Polym Mater. 30(6), 2114–2125 (2020)

    Article  CAS  Google Scholar 

  20. G. Moussavi, H. Hosseini, A. Alahabadi, The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem. Eng. J. 214, 172–179 (2013)

    Article  CAS  Google Scholar 

  21. M.H. Dehghani, S. Kamalian, M. Shayeghi, M. Yousefi, Z. Heidarinejad, S. Agarwal, V.K. Gupta, High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchem. J. 145, 486–491 (2019)

    Article  CAS  Google Scholar 

  22. M. Arvand, A.A. Mirroshandel, An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Food Chem. 280, 115–122 (2019)

    Article  CAS  Google Scholar 

  23. H. Esfandian, A. Samadi-Maybodi, B. Khoshandam, M. Parvini, Experimental and CFD modeling of diazinon pesticide removal using fixed bed column with Cu-modified zeolite nanoparticle. J. Taiwan Inst. Chem. Eng. 75, 164–173 (2017)

    Article  CAS  Google Scholar 

  24. A. Samadi-Maybodi, A. Rahmati, Dual metal zeolitic imidazolate frameworks as an organometallic polymer for effective adsorption of chlorpyrifos in aqueous solution. Environ. Eng. Res. 25(6), 847–853 (2020)

    Article  Google Scholar 

  25. S. Moorthy, G. Moorthy, K. Swaminathan, Fabrication of novel ZnSeO3 anchored on g-C3N4 nanosheets: an outstanding photocatalyst for the mitigation of pesticides and pharmaceuticals. J. Inorg. Organomet. Polym Mater. 30(11), 4664–4676 (2020)

    Article  CAS  Google Scholar 

  26. Y.H. Kotp, Enhancement of industrial effluents quality by using nanocomposite Mg/Al LDH ultrafiltration membranes. J. Inorg. Organomet. Polym Mater. 30(12), 5244–5260 (2020)

    Article  CAS  Google Scholar 

  27. S. Tang, H.K. Lee, Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions. Anal. Chem. 85(15), 7426–7433 (2013)

    Article  CAS  Google Scholar 

  28. K.R. Ramakrishna, T. Viraraghavan, Dye removal using low cost adsorbents. Water Sci. Technol. 36(2–3), 189–196 (1997)

    Article  CAS  Google Scholar 

  29. J. Tang, B. Mu, L. Zong, A. Wang, One-step synthesis of magnetic attapulgite/carbon supported NiFe-LDHs by hydrothermal process of spent bleaching earth for pollutants removal. J. Clean. Prod. 172, 673–685 (2018)

    Article  CAS  Google Scholar 

  30. X. Wang, W. Zhou, C. Wang, Z. Chen, Cotton fiber-supported layered double hydroxides for the highly efficient adsorption of anionic organic pollutants in water. New J. Chem. 42(12), 9463–9471 (2018)

    Article  CAS  Google Scholar 

  31. Y. Wang, L. Zhang, Improved performance of 3D hierarchical NiAl-LDHs micro-flowers via a surface anchored ZIF-8 for rapid multiple-pollutants simultaneous removal and residues monitoring. J. Hazard. Mater. 395, 122635 (2020)

    Article  CAS  Google Scholar 

  32. N. Bagheri, A. Khataee, J. Hassanzadeh, L. Samaei, Highly sensitive chemiluminescence sensing system for organophosphates using mimic LDH supported ZIF-8 nanocomposite. Sens. Actuators B Chem. 284, 220–227 (2019)

    Article  CAS  Google Scholar 

  33. H. Zaghouane-Boudiaf, M. Boutahala, C. Tiar, L. Arab, F. Garin, Treatment of 2, 4, 5-trichlorophenol by MgAl–SDBS organo-layered double hydroxides: Kinetic and equilibrium studies. Chem. Eng. J. 173(1), 36–41 (2011)

    Article  CAS  Google Scholar 

  34. F. Zhang, N. Du, S. Song, W. Hou, Mechano-hydrothermal synthesis of SDS intercalated LDH nanohybrids and their removal efficiency for 2, 4-dichlorophenoxyacetic acid from aqueous solution. Mater. Chem. Phys. 152, 95–103 (2015)

    Article  CAS  Google Scholar 

  35. D. Chaara, F. Bruna, M.A. Ulibarri, K. Draoui, C. Barriga, I. Pavlovic, Organo/layered double hydroxide nanohybrids used to remove non ionic pesticides. J. Hazard. Mater. 196, 350–359 (2011)

    CAS  Google Scholar 

  36. Y.H. Chuang, Y.M. Tzou, M.K. Wang, C.H. Liu, P.N. Chiang, Removal of 2-chlorophenol from aqueous solution by Mg/Al layered double hydroxide (LDH) and modified LDH. Ind. Eng. Chem. Res. 47(11), 3813–3819 (2008)

    Article  CAS  Google Scholar 

  37. M. Sajid, C. Basheer, M. Daud, A. Alsharaa, Evaluation of layered double hydroxide/graphene hybrid as a sorbent in membrane-protected stir-bar supported micro-solid-phase extraction for determination of organochlorine pesticides in urine samples. J. Chromatogr. A 1489, 1–8 (2017)

    Article  CAS  Google Scholar 

  38. M. Khabazipour, M. Anbia, Process optimization and adsorption modeling using hierarchical ZIF-8 modified with lanthanum and copper for sulfate uptake from aqueous solution: kinetic, isotherm and thermodynamic studies. J. Inorg. Organomet. Polym Mater. 31(6), 2401–2424 (2021)

    Article  CAS  Google Scholar 

  39. Y.Q. Tian et al., The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties. Chemistry 9(22), 5673–5685 (2003)

    Article  CAS  Google Scholar 

  40. M. Zhu, J. Tang, W. Wei, S. Li, Recent progress in the syntheses and applications of multishelled hollow nanostructures. Mater. Chem. Front. 4(4), 1105–1149 (2020)

    Article  CAS  Google Scholar 

  41. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103(27), 10186–10191 (2006)

    Article  CAS  Google Scholar 

  42. A. Ahmed, M. Forster, J. Jin, P. Myers, H. Zhang, Tuning morphology of nanostructured ZIF-8 on silica microspheres and applications in liquid chromatography and dye degradation. ACS Appl. Mater. Interfaces 7(32), 18054–18063 (2015)

    Article  CAS  Google Scholar 

  43. M. Gomar, S. Yeganegi, Adsorption of 5-fluorouracil, hydroxyurea and mercaptopurine drugs on zeolitic imidazolate frameworks (ZIF-7, ZIF-8 and ZIF-9). Microporous Mesoporous Mater. 252, 167–172 (2017)

    Article  CAS  Google Scholar 

  44. N.A. Khan, B.K. Jung, Z. Hasan, S.H. Jhung, Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. J. Hazard. Mater. 282, 194–200 (2015)

    Article  CAS  Google Scholar 

  45. J.Q. Jiang, C.X. Yang, X.P. Yan, Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl. Mater. Interfaces 5(19), 9837–9842 (2013)

    Article  CAS  Google Scholar 

  46. F.C.M. Silva, L.K.R. Silva, A.G.D. Santos, V.P.S. Caldeira, J.F. Cruz-Filho, L.S. Cavalcante et al., Structural refinement, morphological features, optical properties, and adsorption capacity of α-Ag2WO4 nanocrystals/SBA-15 mesoporous on rhodamine B dye. J. Inorg. Organomet. Polym Mater. 30(9), 3626–3645 (2020)

    Article  CAS  Google Scholar 

  47. X. Yuan, Z. Wei, Z. Zhang, H. Liu, Hierarchical Coating Nanoarchitectonics of Halloysite Nanotube with Polydopamine and ZIF-8 for Adsorption of Organic Contaminants. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02339-4

    Article  Google Scholar 

  48. X. Dai, S. Feng, W. Wu, Y. Zhou, Z. Ye, Y. Wang, X. Cao, Photocatalytic Degradation of Tetracycline by Z-Scheme Bi2WO6/ZIF-8. J. Inorg. Organomet. Polym. Mater. 32, 2371–2383 (2022)

    Article  CAS  Google Scholar 

  49. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865), 939–943 (2008)

    Article  CAS  Google Scholar 

  50. R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O’Keeffe, O.M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131(11), 3875–3877 (2009)

    Article  CAS  Google Scholar 

  51. J. Troyano, A. Carné-Sánchez, C. Avci, I. Imaz, D. Maspoch, Colloidal metal–organic framework particles: the pioneering case of ZIF-8. Chem. Soc. Rev. 48(23), 5534–5546 (2019)

    Article  CAS  Google Scholar 

  52. M. Schelling, M. Kim, E. Otal, M. Aguirre, J.P. Hinestroza, Synthesis of a zinc–imidazole metal–organic framework (ZIF-8) using ZnO rods grown on cotton fabrics as precursors: arsenate absorption studies. Cellulose 27(11), 6399–6410 (2020)

    Article  CAS  Google Scholar 

  53. M.P. Dicker, P.F. Duckworth, A.B. Baker, G. Francois, M.K. Hazzard, P.M. Weaver, Green composites: a review of material attributes and complementary applications. Compos. A Appl. Sci. Manuf. 56, 280–289 (2014)

    Article  CAS  Google Scholar 

  54. W. Dong, D. Wang, H. Wang, M. Li, F. Chen, F. Jia, Q. Yang, X. Li, X. Yuan, J. Gong, H. Li, J. Ye, Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. J. Colloid Interface Sci. 535, 444–457 (2019)

    Article  CAS  Google Scholar 

  55. Z. Lei, Y. Deng, C. Wang, Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. J. mater. Chem. A 6(7), 3258–3263 (2018)

    Article  CAS  Google Scholar 

  56. Y.T. Liao, S. Dutta, C.H. Chien, C.C. Hu, F.K. Shieh, C.H. Lin, K.C.W. Wu, Synthesis of mixed-ligand zeolitic imidazolate framework (ZIF-8-90) for CO2 adsorption. J. Inorg. Organomet. Polym Mater. 25(2), 251–258 (2015)

    Article  CAS  Google Scholar 

  57. P. Song, Y. Tu, X. Shen, A. Yuan, L. Zhai, S.A. Shah, Fabrication of ZIF-8@ SF linear composite through directly feeding approach. J. Inorg. Organomet. Polym Mater. 29(6), 2083–2089 (2019)

    Article  CAS  Google Scholar 

  58. B. Soltani, H. Nabipour, N.A. Nasab, Efficient storage of gentamicin in nanoscale zeolitic imidazolate framework-8 nanocarrier for pH-responsive drug release. J. Inorg. Organomet. Polym Mater. 28(3), 1090–1097 (2018)

    Article  CAS  Google Scholar 

  59. W. Zhan, Y. Yuan, L. Sun, Y. Yuan, X. Han, Y. Zhao, Hierarchical NiO@ N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution. Small 15(22), 1901024 (2019)

    Article  Google Scholar 

  60. J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano-and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23(8), 2130–2141 (2011)

    Article  CAS  Google Scholar 

  61. S.Z. Mohammadi, Z. Safari, N. Madady, Synthesis of Co3O4@ SiO2 core/shell–nylon 6 magnetic nanocomposite as an adsorbent for removal of Congo red from wastewater. J. Inorg. Organomet. Polym Mater. 30(8), 3199–3212 (2020)

    Article  CAS  Google Scholar 

  62. M. Dinari, N. Roghani, Calcium iron layered double hydroxide/poly (vinyl chloride) nanocomposites: synthesis, characterization and Cd2+ removal behavior. J. Inorg. Organomet. Polym Mater. 30(3), 808–819 (2020)

    Article  CAS  Google Scholar 

  63. M. Nikou, A. Samadi-Maybodi, Application of chemometrics into simultaneous monitoring removal efficiency of two food dyes by an amine-functionalized metal–organic framework. J. Iran. Chem. Soc. 17(7), 1671–1693 (2020)

    Article  CAS  Google Scholar 

  64. J. Xu, S. Gai, F. He, N. Niu, P. Gao, Y. Chen, P. Yang, Reduced graphene oxide/Ni 1–x Co x Al-layered double hydroxide composites: preparation and high supercapacitor performance. Dalton Trans. 43(30), 11667–11675 (2014)

    Article  CAS  Google Scholar 

  65. H.W. Park, J.S. Chae, S.M. Park, K.B. Kim, K.C. Roh, Nickel-based layered double hydroxide from guest vanadium oxide anions. Met. Mater. Int. 19(4), 887–894 (2013)

    Article  CAS  Google Scholar 

  66. C. Xing, F. Musharavati, H. Li, E. Zalezhad, O.K. Hui, S. Bae, B.Y. Cho, Synthesis, characterization, and properties of nickel–cobalt layered double hydroxide nanostructures. RSC Adv. 7(62), 38945–38950 (2017)

    Article  CAS  Google Scholar 

  67. H. Cui, Y. Zhao, W. Ren, M. Wang, Y. Liu, Large scale selective synthesis of α-Co (OH) 2 and β-Co (OH) 2 nanosheets through a fluoride ions mediated phase transformation process. J. Alloy. Compd. 562, 33–37 (2013)

    Article  CAS  Google Scholar 

  68. L. Wang, J. Fu, Y. Zhang, X. Liu, Y. Yin, L. Dong, S. Chen, Mesoporous β-Co (OH) 2 nanowafers and nanohexagonals obtained synchronously in one solution and their electrochemical hydrogen storage properties. Prog. Nat.Sci. 26(6), 555–561 (2016)

    Article  CAS  Google Scholar 

  69. H. Ebrahimzade, G.R. Khayati, M. Schaffie, Preparation and kinetic modeling of β-Co (OH) 2 nanoplates thermal decomposition obtained from spent Li-ion batteries. Advan. Powder Technol. 28(10), 2779–2786 (2017)

    Article  CAS  Google Scholar 

  70. N.P. Dileep, T.V. Vineesh, P.V. Sarma, M.V. Chalil, C.S. Prasad, M.M. Shaijumon, Electrochemically exfoliated β-Co (OH) 2 nanostructures for enhanced oxygen evolution electrocatalysis. ACS Appl. Energy Mater. 3(2), 1461–1467 (2020)

    Article  CAS  Google Scholar 

  71. Y. Guo, Z. Zhu, Y. Qiu, J. Zhao, Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions. J. Hazard. Mater. 239, 279–288 (2012)

    Article  Google Scholar 

  72. N. Hassan, A. Shahat, A. El-Didamony, M. El-Desouky, A.A. El-Bindary, Equilibrium, kinetic and thermodynamic studies of adsorption of cationic dyes from aqueous solution using ZIF-8. Moroc. J. Chem. 8(3), 8–3 (2020)

    Google Scholar 

  73. J.J. Beh, J.K. Lim, E.P. Ng, B.S. Ooi, Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): from the perspective of reaction kinetics and thermodynamics of nucleation. Mater. Chem. Phys. 216, 393–401 (2018)

    Article  CAS  Google Scholar 

  74. Y. Zhang, Y. Jia, M. Li, L.A. Hou, Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Sci. Rep. 8(1), 1–7 (2018)

    Google Scholar 

  75. L. Xu, Y.S. Ding, C.H. Chen, L. Zhao, C. Rimkus, R. Joesten, S.L. Suib, 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem. Mater. 20(1), 308–316 (2008)

    Article  CAS  Google Scholar 

  76. G.X. Tong, F.T. Liu, W.H. Wu, J.P. Shen, X. Hu, Y. Liang, Polymorphous α-and β-Ni (OH) 2 complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors. CrystEngComm 14(18), 5963–5973 (2012)

    Article  CAS  Google Scholar 

  77. J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 326, 1145–1158 (2017)

    Article  CAS  Google Scholar 

  78. R.T. Khajeh, S. Aber, M. Zarei, Comparison of NiCo2O4, CoNiAl-LDH, and CoNiAl-LDH@ NiCo2O4 performances as ORR catalysts in MFC cathode. Renew. Energy 154, 1263–1271 (2020)

    Article  Google Scholar 

  79. L. Su, Z. Song, L. Lu, G. Pang, Improving the low-temperature capacitance of CoNiAl three-component layered double hydroxide in a redox electrolyte. Mater. Res. Bull. 48(9), 3636–3639 (2013)

    Article  CAS  Google Scholar 

  80. S. Samuei, J. Fakkar, Z. Rezvani, A. Shomali, B. Habibi, Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: application as a glucose sensor. Anal. Biochem. 521, 31–39 (2017)

    Article  CAS  Google Scholar 

  81. M. Nikou, A. Samadi-Maybodi, K. Yasrebi, E. Sedighi-Pashaki, Simultaneous monitoring of the adsorption process of two organophosphorus pesticides by employing GO/ZIF-8 composite as an adsorbent. Environ. Technol. Innov. 23, 101590 (2021)

    Article  CAS  Google Scholar 

  82. C.S. Wu, Z.H. Xiong, C. Li, J.M. Zhang, Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Adv. 5(100), 82127–82137 (2015)

    Article  CAS  Google Scholar 

  83. A. Samadi-Maybodi, M. Nikou, Removal of sarafloxacin from aqueous solution by a magnetized metal-organic framework Artificial neural network modeling. Polyhedron 179, 114342 (2020)

    Article  CAS  Google Scholar 

  84. C. MacBean (ed.), The pesticide manual: a world compendium (BCPC, Cambridge, 2012)

    Google Scholar 

  85. G. Carja, R. Nakamura, T. Aida, H. Niiyama, Textural properties of layered double hydroxides: effect of magnesium substitution by copper or iron. Microporous Mesoporous Mater. 47(2–3), 275–284 (2001)

    Article  CAS  Google Scholar 

  86. F. Bruna, R. Celis, I. Pavlovic, C. Barriga, J. Cornejo, M.A. Ulibarri, Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA): systems Mg–Al, Mg–Fe and Mg–Al–Fe. J. Hazard. Mater. 168(2–3), 1476–1481 (2009)

    Article  CAS  Google Scholar 

  87. B. Wang, H. Zhang, D.G. Evans, X. Duan, Surface modification of layered double hydroxides and incorporation of hydrophobic organic compounds. Mater. Chem. Phys. 92(1), 190–196 (2005)

    Article  CAS  Google Scholar 

  88. J. Cornejo, R. Celis, I. Pavlovic, M.A. Ulibarri, Interactions of pesticides with clays and layered double hydroxides: a review. Clay Miner. 43(2), 155–175 (2008)

    Article  CAS  Google Scholar 

  89. M.M. Mortland, Clay-organic complexes and interactions. Adv. Agron. 22, 75–117 (1970)

    Article  CAS  Google Scholar 

  90. L.S. Hundal, M.L. Thompson, D.A. Laird, A.M. Carmo, Sorption of phenanthrene by reference smectites. Environ. Sci. Technol. 35(17), 3456–3461 (2001)

    Article  CAS  Google Scholar 

  91. J. Inacio, C. Taviot-Gueho, C. Forano, J.P. Besse, Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl. Clay Sci. 18(5–6), 255–264 (2001)

    Article  CAS  Google Scholar 

  92. A. Naidu, M.N. Chadraprabha, R.D. Kanamadi, T.V. Ramachandra, Adsorption of methylene blue and amaranth on to tamarind pod shells. J. Biochem. Technol. 3(5), 189–192 (2014)

    Google Scholar 

  93. R. Ahmad, R. Kumar, Adsorption of amaranth dye onto alumina reinforced polystyrene. Clean-Soil Air Water 39(1), 74–82 (2011)

    Article  CAS  Google Scholar 

  94. M.A. Nazir, N.A. Khan, C. Cheng, S.S. Shah, T. Najam, M. Arshad, A. Sharif, S. Akhtar, A. ur Rehman, Surface induced growth of ZIF-67 at Co-layered double hydroxide: removal of methylene blue and methyl orange from water. Appl. Clay Sci. 190, 105564 (2020)

    Article  CAS  Google Scholar 

  95. M. Armaghan, M.M. Amini, Adsorption of diazinon and fenitothion on MCM-41 and MCM-48 mesoporous silicas from non-polar solvent. Colloid J. 71(5), 583–588 (2009)

    Article  CAS  Google Scholar 

  96. K.S. Ryoo, S.Y. Jung, H. Sim, J.H. Choi, Comparative study on adsorptive characteristics of diazinon in water by various adsorbents. Bull. Korean Chem. Soc. 34(9), 2753–2759 (2013)

    Article  CAS  Google Scholar 

  97. T.T. Firozjaee, N. Mehrdadi, M. Baghdadi, G. Bidhendi, The removal of diazinon from aqueous solution by chitosan/carbon nanotube adsorbent. Desalin. Water Treat. 79, 291–300 (2017)

    Article  CAS  Google Scholar 

  98. P. Kabwadza-Corner, N. Matsue, E. Johan, T. Henmi, Mechanism of Diazinon adsorption on iron modified montmorillonite. Am. J. Anal. Chem. (2014). https://doi.org/10.4236/ajac.2014.52011

    Article  Google Scholar 

  99. M. Xu, M. Wei, Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications. Adv. Func. Mater. 28(47), 1802943 (2018)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolraouf Samadi-Maybodi.

Ethics declarations

Conflict of interest

No potential competing interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadi-Maybodi, A., Ghezel-Sofla, H. & BiParva, P. Co/Ni/Al-LTH Layered Triple Hydroxides with Zeolitic Imidazolate Frameworks (ZIF-8) as High Efficient Removal of Diazinon from Aqueous Solution. J Inorg Organomet Polym 33, 10–29 (2023). https://doi.org/10.1007/s10904-022-02469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02469-9

Keywords

Navigation