Skip to main content
Log in

Characterization of Superparamagnetic/Monodisperse PEG-Coated Magnetite Nanoparticles Sonochemically Prepared from the Hematite Ore for Cd(II) Removal from Aqueous Solutions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, a novel sonochemically synthetic process of superparamagnetic and monodisperse magnetite nanoparticles from the Egyptian hematite ore has been done. Then the synthesized magnetite nanoparticles were subjected to surface modification through coating by polyethylene glycol to obtain stabilized and biocompatible magnetic nanoparticles (PEG-MN). The synthesized PEG-MN nanoparticles were characterized by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XRF), vibrating sample magnetometer (VSM), infrared spectroscopy (FT-IR), adsorption of nitrogen (BET method), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. The results showed that the synthesized PEG-MN nanoparticles have an average crystalline size of 12 nm and 69.6% of iron oxide (Fe3O4) in the sample with a specific surface area of 219 m2/g. The magnetic hysteresis curve revealed that the synthesized PEG-MN nanoparticles exhibit a superparamagnetic behavior at room temperature with a saturation magnetization of 39.370 emu/g. While the morphology of the synthesized PEG-MN nanoparticles displayed a spherical shape and well-PEG coating of the magnetite particles as well as a perfect monodispersity of the particles. The reactivity of the PEG-MN nanoparticles was examined for adsorption of the cadmium ion Cd(II) from aqueous solutions. The maximum adsorption capacity of the PEG-MN nanoparticles was found to be 0.452 mg/g. The adsorption process is well fitted by the pseudo-second-order kinetic model, and the adsorption efficiency of Cd(II) was found to be 52% suggesting that the synthesized PEG-MN nanoparticles are an effective and promising tool for the removal of the selected metal.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13(10), 2638–2650 (2011). https://doi.org/10.1039/c1gc15386b

    Article  CAS  Google Scholar 

  2. S. Salem, E. El-Gammal, Iron ore prospection East Aswan, Egypt, using remote sensing techniques. Egypt J Remote Sens Space Sci 18(2), 195–206 (2015). https://doi.org/10.1016/j.ejrs.2015.04.003

    Article  Google Scholar 

  3. Y.T. Didenko, W.B. McNamara, K.S. Suslick, Hot spot conditions during cavitation in water. J. Am. Chem. Soc. 121(24), 5817–5818 (1999). https://doi.org/10.1021/ja9844635

    Article  CAS  Google Scholar 

  4. E.H. Kim, H.S. Lee, B.K. Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005). https://doi.org/10.1016/j.jmmm.2004.11.093

    Article  CAS  Google Scholar 

  5. C.Y. Haw, F. Mohamed, C.H. Chia, S. Radiman, S. Zakaria, N. Huang et al., Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram. Int. 36(4), 1417–1422 (2010). https://doi.org/10.1016/j.ceramint.2010.02.005

    Article  CAS  Google Scholar 

  6. J. Xu, H. Yang, W. Fu, K. Du, Y. Sui, J. Chen et al., Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater. 309(2), 307–311 (2007). https://doi.org/10.1016/j.jmmm.2006.07.037

    Article  CAS  Google Scholar 

  7. L. Cabrera, S. Gutierrez, N. Menendez, M. Morales, P. Herrasti, Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta 53(8), 3436–3441 (2008). https://doi.org/10.1016/j.electacta.2007.12.006

    Article  CAS  Google Scholar 

  8. A.V. Rane, K. Kanny, V. Abitha, S. Thomas, Methods for synthesis of nanoparticles and fabrication of nanocomposites in synthesis of inorganic nanomaterials (Elsevier, London, 2018), pp. 121–139

    Google Scholar 

  9. A. Hamta, M.R. Dehghani, Application of polyethylene glycol based aqueous two-phase systems for extraction of heavy metals. J. Mol. Liq. 231, 20–24 (2017). https://doi.org/10.1016/j.molliq.2017.01.084

    Article  CAS  Google Scholar 

  10. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment in molecular, clinical and environmental toxicology (Springer, Berlin, 2012), pp. 133–164

    Book  Google Scholar 

  11. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72 (2014). https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4(1), 37–59 (2017). https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  13. E.A. Abdelrahman, A. Subaihi, Application of geopolymers modified with chitosan as novel composites for efficient removal of Hg(II), Cd(II), and Pb(II) ions from aqueous media. J. Inorg. Organometall. Polym. Mater. 1, 24 (2019). https://doi.org/10.1007/s10904-019-01380-0

    Article  CAS  Google Scholar 

  14. P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water—a comprehensive review. Resour. Eff. Technol. 2(4), 175–184 (2016). https://doi.org/10.1016/j.reffit.2016.09.004

    Article  Google Scholar 

  15. P.Z. Ray, H.J. Shipley, Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv. 5(38), 29885–29907 (2015). https://doi.org/10.1039/c5ra02714d

    Article  CAS  Google Scholar 

  16. L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19(2–4), 465–474 (2013). https://doi.org/10.1007/s10450-012-9468-1

    Article  CAS  Google Scholar 

  17. D.C. Culita, C.M. Simonescu, R.E. Patescu, S. Preda, N. Stanica, C. Munteanu, O. Oprea, Polyamine functionalized magnetite nanoparticles as novel adsorbents for Cu(II) removal from aqueous solutions. J. Inorg. Organomet. Polym. Mater. 27(2), 490–502 (2017). https://doi.org/10.1007/s10904-016-0491-7

    Article  CAS  Google Scholar 

  18. E. Parthiban, N. Kalaivasan, S. Sudarsan, Dual responsive (pH and magnetic) nanocomposites based on Fe3O4@polyaniline/itaconic acid: synthesis, characterization and removal of toxic hexavalent chromium from tannery wastewater. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01602-w

    Article  Google Scholar 

  19. A. Hamdy, M.K. Mostafa, M. Nasr, Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water Sci. Technol. 78(2), 367–378 (2018). https://doi.org/10.2166/wst.2018.306

    Article  CAS  PubMed  Google Scholar 

  20. A. Ito, M. Shinkai, H. Honda, T. Kobayashi, Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100(1), 1–11 (2005). https://doi.org/10.1263/jbb.100.1

    Article  CAS  PubMed  Google Scholar 

  21. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander-Elst et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008). https://doi.org/10.1021/cr900197g

    Article  CAS  PubMed  Google Scholar 

  22. M.M. Sadeghi, A.S. Rad, M. Ardjmand, A. Mirabi, Functionalization of SBA-15 by dithiooxamide towards removal of Co(II) ions from real samples: isotherm, thermodynamic and kinetic studies. Adv. Powder Technol. 30(9), 1823–1834 (2019). https://doi.org/10.1016/j.apt.2019.05.028

    Article  CAS  Google Scholar 

  23. Z. Khanjari, A. Mirabi, A.S. Rad, M. Moradian, Selective removal of cadmium ions from water samples by using Br-PADAP functionalized SBA-15 particles. Desalin Water Treat 130, 172–181 (2018). https://doi.org/10.5004/dwt.2018.22971

    Article  CAS  Google Scholar 

  24. S.Z. Mohammadi, Z. Safari, N. Madady, Synthesis of Co3O4@SiO2 core/shell–nylon 6 magnetic nanocomposite as an adsorbent for removal of congo red from wastewater. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01485-x

    Article  Google Scholar 

  25. V. Gupta, P. Carrott, M. Ribeiro, C. Suhas, Low-cost adsorbents: growing approach to wastewater treatment—a review. Critical Rev. Environ. Sci. Technol. 39(10), 783–842 (2009). https://doi.org/10.1080/10643380801977610

    Article  Google Scholar 

  26. A. Mirabi, A.S. Rad, M.R. Jamali, N. Danesh, Use of modified γ-alumina nanoparticles for the extraction and preconcentration of trace amounts of cadmium ions. Aust. J. Chem. 69(3), 314–318 (2016). https://doi.org/10.1071/CH15391

    Article  CAS  Google Scholar 

  27. A. Mirabi, A.S. Rad, M. Abdollahi, Preparation of modified MWCNT with dithiooxamide for preconcentration and determination of trace amounts of cobalt ions in food and natural water samples. ChemistrySelect 2(16), 4439–4444 (2017). https://doi.org/10.1002/slct.201700521

    Article  CAS  Google Scholar 

  28. Y.-T. Duan, C.B. Sangani, Ameta, R, Thermal, SEM, AFM, BET and biological analysis of newly synthesized Fe2+/Fe3+ based MOIFs. J. Mol. Liq. 295, 111709 (2019). https://doi.org/10.1016/j.molliq.2019.111709

    Article  CAS  Google Scholar 

  29. M.M. Sadeghi, A.S. Rad, M. Ardjmand, A. Mirabi, Preparation of magnetic nanocomposite based on polyaniline/Fe3O4 towards removal of lead (II) ions from real samples. Synth. Met. 245, 1–9 (2018). https://doi.org/10.1016/j.synthmet.2018.08.001

    Article  CAS  Google Scholar 

  30. A. Mirabi, A.S. Rad, Nourani, S, Application of modified magnetic nanoparticles as a sorbent for preconcentration and determination of nickel ions in food and environmental water samples. TrAC Trends Anal. Chem. 74, 146–151 (2015). https://doi.org/10.1016/j.trac.2015.06.007

    Article  CAS  Google Scholar 

  31. A. Mirabi, Z. Dalirandeh, A.S. Rad, Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry. J. Magn. Magn. Mater. 381, 138–144 (2015). https://doi.org/10.1016/j.jmmm.2014.12.071

    Article  CAS  Google Scholar 

  32. A. Mirabi, A.S. Rad, Khodadad, H, Modified surface based on magnetic nanocomposite of dithiooxamide/Fe3O4 as a sorbent for preconcentration and determination of trace amounts of copper. J. Magn. Magn. Mater. 389, 130–135 (2015). https://doi.org/10.1016/j.jmmm.2015.04.051

    Article  CAS  Google Scholar 

  33. M.E.-S. Goher, M.M. Emara, M.H. Abdo, N.M. Refaat-Mah, A.M. Abdel-Sata, A.S. El-Shamy, Cadmium removal from aqueous solution using superparamagnetic iron oxide nanosorbents on Amberlite IR 120 H support. J. Appl. Sci. 17, 296–305 (2017). https://doi.org/10.3923/jas.2017.296.305

    Article  CAS  Google Scholar 

  34. S. Venkateswarlu, M. Yoon, Rapid removal of cadmium ions using green-synthesized Fe3O4 nanoparticles capped with diethyl-4-(4 amino-5-mercapto-4H-1,2,4-triazol-3-yl) phenyl phosphonate. RSC Adv. 5(80), 65444–65453 (2015). https://doi.org/10.1039/c5ra10628a

    Article  CAS  Google Scholar 

  35. S. Mohammed, A. Kapri, R. Goel, Heavy metal pollution: source, impact, and remedies in biomanagement of metal-contaminated soils (Springer, Berlin, 2011), pp. 1–28

    Book  Google Scholar 

  36. J. Godt, F. Scheidig, C. Grosse-Siestrup, V. Esche, P. Brandenburg, A. Reich et al., The toxicity of cadmium and resulting hazards for human health. J. Occupat. Med. Toxicol. 1(1), 22 (2006). https://doi.org/10.1186/1745-6673-1-22

    Article  CAS  Google Scholar 

  37. M. Hutton, Sources of cadmium in the environment. Ecotoxicol. Environ. Saf. 7(1), 9–24 (1983). https://doi.org/10.1016/0147-6513(83)90044-1

    Article  CAS  PubMed  Google Scholar 

  38. J.-F. Liu, Z.-S. Zhao, G.-B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42(18), 6949–6954 (2008). https://doi.org/10.1021/es800924c

    Article  CAS  PubMed  Google Scholar 

  39. ASTDRU, Cadmium toxicity what are the US standards for cadmium exposure. https://www.atsdr.cdc.gov/csem/csem.asp (2013).

  40. A. Hamdy, M.K. Mostafa, M. Nasr, Techno-economic estimation of electroplating wastewater treatment using zero-valent iron nanoparticles: batch optimization, continuous feed, and scaling up studies. Environ. Sci. Pollut. Res. 26(24), 25372–25385 (2019). https://doi.org/10.1007/s11356-019-05850-3

    Article  CAS  Google Scholar 

  41. M.H. Ehrampoush, M. Miria, M.H. Salmani, A.H. Mahvi, Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J. Environ. Health Sci. Eng. 13(1), 84 (2015). https://doi.org/10.1186/s40201-015-0237-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. G.F. Goya, T. Berquo, F. Fonseca, M. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94(5), 3520–3528 (2003). https://doi.org/10.1063/1.1599959

    Article  CAS  Google Scholar 

  43. B. Wang, Q. Wei, S. Qu, Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int. J. Electrochem. Sci. 8(3), 3786–3793 (2013)

    CAS  Google Scholar 

  44. R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses (Wiley, New York, 2003)

    Book  Google Scholar 

  45. M.I. Dar, S. Shivashankar, Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Adv. 4(8), 4105–4113 (2014). https://doi.org/10.1039/c3ra45457f

    Article  CAS  Google Scholar 

  46. J. Ma, L. Wang, Y. Wu, X. Dong, Q. Ma, C. Qiao et al., Facile synthesis of Fe3O4 nanoparticles with a high specific surface area. Mater. Trans. (2014). https://doi.org/10.2320/matertrans.m2014184

    Article  Google Scholar 

  47. S.L. Iconaru, R. Guégan, C.L. Popa, M. Motelica-Heino, C.S. Ciobanu, D. Predoi, Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl. Clay Sci. 134, 128–135 (2016). https://doi.org/10.1016/j.clay.2016.08.019

    Article  CAS  Google Scholar 

  48. J. Liu, Y. Yu, S. Zhu, J. Yang, J. Song, W. Fan et al., Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption. PLoS ONE 13, 2 (2018). https://doi.org/10.1371/journal.pone.0191229

    Article  CAS  Google Scholar 

  49. J.-N. Park, P. Zhang, Y.-S. Hu, E.W. McFarland, Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 21(22), 225708 (2010). https://doi.org/10.1088/0957-4484/21/22/225708

    Article  CAS  PubMed  Google Scholar 

  50. J.M. Santillán, D. Muñetón Arboleda, D.F. Coral, M.B. Fernández-van-Raap, D. Muraca, D.C. Schinca et al., Optical and magnetic properties of Fe nanoparticles fabricated by femtosecond laser ablation in organic and inorganic solvents. ChemPhysChem 18(9), 1192–1209 (2017). https://doi.org/10.1002/cphc.201601279

    Article  CAS  PubMed  Google Scholar 

  51. N.T. Tavengwa, E. Cukrowska, L. Chimuka, Sequestration of U(VI) from aqueous solutions using precipitate ion imprinted polymers endowed with oleic acid functionalized magnetite. J. Radioanal. Nucl. Chem. 304(2), 933–943 (2015). https://doi.org/10.1007/s10967-014-3878-3

    Article  CAS  Google Scholar 

  52. T.I. Shalaby, N. Fikrt, M. Mohamed, M. El Kady, Preparation and characterization of iron oxide nanoparticles coated with chitosan for removal of Cd(II) and Cr(VI) from aqueous solution. Water Sci. Technol. 70(6), 1004–1010 (2014). https://doi.org/10.2166/wst.2014.315

    Article  CAS  PubMed  Google Scholar 

  53. P. Kahrizi, F.S. Mohseni-Shahri, F. Moeinpour, Adsorptive removal of cadmium from aqueous solutions using NiFe2O4/hydroxyapatite/graphene quantum dots as a novel nano-adsorbent. J Nanostruct Chem 8(4), 441–452 (2018). https://doi.org/10.1007/s40097-018-0284-3

    Article  CAS  Google Scholar 

  54. Y. Huang, A.A. Keller, EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Res. 80, 159–168 (2015). https://doi.org/10.1016/j.watres.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  55. V. Devi, M. Selvaraj, P. Selvam, A.A. Kumar, S. Sankar, K. Dinakaran, Preparation and characterization of CNSR functionalized Fe3O4 magnetic nanoparticles: an efficient adsorbent for the removal of cadmium ion from water. J. Environ. Chem. Eng. 5(5), 4539–4546 (2017). https://doi.org/10.1016/j.jece.2017.08.036

    Article  CAS  Google Scholar 

  56. E. Cheraghi, E. Ameri, A. Moheb, Adsorption of cadmium ions from aqueous solutions using sesame as a low-cost biosorbent: kinetics and equilibrium studies. Int. J. Environ. Sci. Technol. 12(8), 2579–2592 (2015). https://doi.org/10.1007/s13762-015-0812-3

    Article  CAS  Google Scholar 

  57. A. Hamdy, M. Mostafa, M. Nasr, Regression analysis and artificial intelligence for removal of methylene blue from aqueous solutions using nanoscale zero-valent iron. Int. J. Environ. Sci. Technol. 16(1), 357–372 (2019). https://doi.org/10.1007/s13762-018-1677-z

    Article  CAS  Google Scholar 

  58. T.M. Elmorsi, Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. J. Environ. Protect. 2(06), 817 (2011). https://doi.org/10.4236/jep.2011.26093

    Article  CAS  Google Scholar 

  59. J.M. Thomas, W.J. Thomas, H. Salzberg, Introduction to the principles of heterogeneous catalysis. J. Electrochem. Soc. 114(11), 279C–279C (1967)

    Article  Google Scholar 

  60. R. Kumar, J. Chawla, Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual. Exposure Health 5(4), 215–226 (2014). https://doi.org/10.1007/s12403-013-0100-8

    Article  CAS  Google Scholar 

  61. K. Chen, J. He, Y. Li, X. Cai, K. Zhang, T. Liu et al., Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J. Colloid Interface Sci. 494, 307–316 (2017). https://doi.org/10.1016/j.jcis.2017.01.082

    Article  CAS  PubMed  Google Scholar 

  62. S.M. Ali, A. Galal, N.F. Atta, Toxic heavy metal ions removal from wastewater by nano-magnetite: case study Nile river water. Egypt. J. Chem. 60(4), 601–612 (2017)

    Article  Google Scholar 

  63. S. Ghafoor, S. Ata, Synthesis of carboxyl-modified Fe3O4@ SiO2 nanoparticles and their utilization for the remediation of cadmium and nickel from aqueous solution. J. Chil. Chem. Soc. 62(3), 3588–3592 (2017). https://doi.org/10.4067/s0717-97072017000303588

    Article  CAS  Google Scholar 

  64. J. Gong, L. Chen, G. Zeng, F. Long, J. Deng, Q. Niu et al., Shellac-coated iron oxide nanoparticles for removal of cadmium(II) ions from aqueous solution. J. Environ. Sci. 24(7), 1165–1173 (2012). https://doi.org/10.1016/s1001-0742(11)60934-0

    Article  CAS  Google Scholar 

  65. I. Lung, M. Stan, O. Opris, M.-L. Soran, M. Senila, M. Stefan, Removal of lead(II), cadmium(II), and arsenic(III) from aqueous solution using magnetite nanoparticles prepared by green synthesis with box–behnken design. Anal. Lett. 51(16), 2519–2531 (2018). https://doi.org/10.1080/00032719.2018.1446974

    Article  CAS  Google Scholar 

  66. L. de Castro Alves, S. Yáñez Vilar, Y. Piñeiro Redondo, J. Rivas, Novel magnetic nanostructured beads for cadmium(II) removal. Nanomaterials 9(3), 356 (2019). https://doi.org/10.3390/nano9030356

    Article  CAS  PubMed Central  Google Scholar 

  67. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V.K. Garg, M. Sillanpää, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour. Ind. 20, 54–74 (2018). https://doi.org/10.1016/j.wri.2018.10.001

    Article  Google Scholar 

  68. H. Wang, Y. Lin, Y. Li, A. Dolgormaa, H. Fang, L. Guo, J. Huang, Yang, J, A novel magnetic Cd(II) ion-imprinted polymer as a selective sorbent for the removal of cadmium ions from aqueous solution. J. Inorg. Organomet. Polym Mater. 29(6), 1874–1885 (2019). https://doi.org/10.1007/s10904-019-01148-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Egypt Nanotechnology Center (EGNC), Cairo University (https://egnc.cu.edu.eg/) to support this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hamdy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, A., Ismail, S.H., Ebnalwaled, A.A. et al. Characterization of Superparamagnetic/Monodisperse PEG-Coated Magnetite Nanoparticles Sonochemically Prepared from the Hematite Ore for Cd(II) Removal from Aqueous Solutions. J Inorg Organomet Polym 31, 397–414 (2021). https://doi.org/10.1007/s10904-020-01741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01741-0

Keywords

Navigation