Skip to main content
Log in

Enzyme-Free Glucose Sensor Based on Star-Like Copper Particles-Polyaniline Composite Film

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

A Publisher Correction to this article was published on 27 May 2020

This article has been updated

Abstract

This work reports on the preparation of an electrode material based on polyaniline (PAni) thin film, with an average thickness of 100 nm, containing copper (Cu) microparticles dispersed on its surface. The prepared electrode material was employed as a sensor for glucose determination in alkaline medium. A two-step electrochemical process was used to synthesize the Cu–PAni composite films: First, PAni layer was deposited on indium tin oxide (ITO) substrate from an organic solution of the aniline under potensiostaic conditions. Secondly, Cu particles were electrodeposited on PAni/ITO surface from a separate aqueous solution by chronoamperometry technique. The morphology analysis of the Cu–PAni composites shows that the copper particles are visible like stars uniformly dispersed over the polymer surface. XRD patterns shows that the PAni film is amorphous whereas copper is polycrystalline. Examined by cyclic voltammetry and chronoamperometry techniques, the response to glucose of the Cu–PAni/ITO electrode shows good performance in 0.1 M NaOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 27 May 2020

    The article “Enzyme-Free Glucose Sensor Based on Star-Like Copper Particles-Polyaniline Composite Film”, written by Ouafia Belgherbi, Dalila Chouder, Delloula Lakhdari, Charif Dehchar, Samiha Laidoudi, Leila Lamiri, Abderrazak Hamam and Lamria Seid, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 29 April 2020 with open access. With the author(s)’ decision to step back from Open Choice, the copyright of the article changed on 29 May 2020 to © Springer Science+Business Media, LLC, part of Springer Nature 2020 and the article is forthwith distributed under the terms of copyright.

References

  1. H. Li, C.Y. Guo, C.L. Xu, A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu–Ag superstructures. Biosens. Bioelectron. 63, 339–346 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. J.S. Ye, C.W. Chen, C.L. Lee, Pdnanocubeas non-enzymatic glucose sensor. Sens. Actuat. B 208, 569–574 (2015)

    Article  CAS  Google Scholar 

  3. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. S. Rauf, A. Ihsan, K. Akhtar, M.A. Ghauri, M. Rahman, M.A. Anwar, A.M. Khalid, Glucose oxidase immobilization on a novel cellulose acetate polymethyl methacrylate membrane. J. Biotechnol. 121, 351–360 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. T.W. Siegel, S.R. Smith, C.A. Ellery, J.R. Williamson, P.J. Oates, An enzymatic fluorometric assay for fructose. Anal. Biochem. 280, 329–331 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. L.H. Cao, J. Ye, L.L. Tong, B. Tang, A New route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Chem. A Eur. J. 14, 9633–9640 (2008)

    Article  CAS  Google Scholar 

  7. H. Muguruma, Y. Kase, N. Murata, K. Matsumura, Adsorption of glucose oxidase onto plasma-polymerized film characterized by atomic force microscopy, quartz crystal microbalance, and electrochemical measurement. J. Phys. Chem. B 110, 26033–26039 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. M. Nordling, M. Elmgren, J. Stahlberg, G. Pettersson, S.E. Lindquist, A combined cellobiose oxidase/glucose oxidase biosensor for HPLC determination on-line of glucose and soluble cellodextrines. Anal. Biochem. 214, 389–396 (1993)

    Article  CAS  PubMed  Google Scholar 

  9. B.K. Jena, C.R. Raj, Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chemistry 12, 2702–2708 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. N.D. Nguyen, T. VanNguyena, A.D. Chua, H.V. Trana, L.T. Trana, C.D. Huynha, A label-free colorimetric sensor based on silver nanoparticles directed to hydrogen peroxide and glucose. Arabian J. Chem. 11, 1134–1143 (2018)

    Article  CAS  Google Scholar 

  11. D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, G. Yu, Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540–3546 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Sun, H. Yang, X. Yu, H. Meng, X. Xu, A novel nonenzymatic amperometric glucose sensor based on a hollow Pt–Ni alloy nanotube array electrode with enhanced sensitivity. RSC Adv. 5, 70387–70394 (2015)

    Article  CAS  Google Scholar 

  13. L. Wang, W. Zhu, W. Lu, X. Qin, X. Xu, Surface plasmon aided high sensitive non-enzymatic glucose sensor using Au/NiAu multilayered nanowire arrays. Biosens. Bioelectron. 111, 41–46 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Mu, D. Jia, Y. He, Y. Miao, H.L. Wu, Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 26, 2948–2952 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. X. Liu, W. Yang, L. Chen, J. Jia, Three-dimensional copper foam supported CuO nanowire arrays. Electrochim. Acta 235, 519–526 (2017)

    Article  CAS  Google Scholar 

  16. X. Gong, Y. Gu, F. Zhang, Z. Liu, Y. Li, G. Chen, B. Wang, High-performance non-enzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition. J. Front. Mater. 6, 1–9 (2019)

    Article  Google Scholar 

  17. A.R. Abbasi, M. Yousefshahi, K. Daasbjerg, Non-enzymatic electroanalytical sensing of glucose based on nano nickel-coordination polymers-modified glassy carbon electrode. J. Inorg. Organometall. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01452-6

    Article  Google Scholar 

  18. J.T.C. Barragan, S. Kogikoski, E.T.S.G. da Silva, L.T. Kubota, Insight into the electro-oxidation mechanism of glucose and other carbohydrates by CuO-based electrodes. Anal. Chem. 90, 3357–3365 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Handa, K. Watanabe, K. Chihara, E. Katsuno, T. Horiba, M. Inoue, S. Komaba, The mechanism of electro-catalytic oxidation of glucose on manganese dioxide electrode used for amperometric glucose detection. J. Electrochem. Soc. 165, H742–H749 (2018)

    Article  CAS  Google Scholar 

  20. J.H. Shim, M. Kang, Y. Lee, C. Lee, A nanoporous ruthenium oxide framework for amperometric sensing of glucose and potentiometric sensing of pH. Microchim. Acta 177, 211–219 (2012)

    Article  CAS  Google Scholar 

  21. S. Bilal, W. Ullah, A.H. Ali Shah, Polyaniline@CuNinanocomposite: a highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim. Acta 284, 382–391 (2018)

    Article  CAS  Google Scholar 

  22. A. Al-Mokaram, R. Yahya, M. Abdi, H. Mahmud, The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole–chitosan–titanium dioxide nanocomposite films. Nanomaterials 7, 129 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  23. V. Tsakova, D. Borissov, Electrochemical deposition of copper in polyaniline films—number density and spatial distribution of deposited metal clusters. Electrochem. Commun. 2, 511–515 (2000)

    Article  CAS  Google Scholar 

  24. E.C. Venancio, W.T. Napporn, A.J. Motheo, Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices. Electrochim. Acta 47, 1495–1501 (2002)

    Article  CAS  Google Scholar 

  25. M.C. Henry, C.C. Hsueh, B.P. Timko, M.S. Freund, Reaction of pyrrole and chlorauric acid a new route to composite colloids. J. Electrochem. Soc. 148, D155–D162 (2001)

    Article  CAS  Google Scholar 

  26. J.P. Liu, H.-Y. Zhang, J. Wang, Synthesis of PPy/BioHAP/AgHg microstructures and their applications in non-enzymatic sensing of glucose. J. Inorg. Organometall. Polym. Mater. 29, 423–428 (2018)

    Article  CAS  Google Scholar 

  27. H.W. Lei, B. Wu, C.S. Kita, H. Cha, Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. J. Electroanal. Chem. 382, 103–110 (1995)

    Article  Google Scholar 

  28. M.U. AnuPrathap, R. Srivastava, Morphological controlled synthesis of micro-/nano-polyaniline. J. Polym. Res. 18, 2455–2467 (2011)

    Article  CAS  Google Scholar 

  29. H.-W. Lei, B. Wu, C.S. Cha, H. Kita, Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. J. Electroanal. Chem. 382, 103–110 (1995)

    Article  Google Scholar 

  30. C.C. Buron, B. Lakard, A.F. Monnin, V. Moutarlier, S. Lakard, Elaboration and characterization of polyaniline films electrodeposited on tin oxides. Synth. Met. 161, 2162–2169 (2011)

    Article  CAS  Google Scholar 

  31. D.H. Ninh, T.T. Thao, P.D. Long, N.N. Dinh, Characterization of electrochromic properties of polyaniline thin films electropolymerized in H2SO4 solution. Open J. Org. Polym. Materi. 6, 30–37 (2016)

    Article  CAS  Google Scholar 

  32. L. Aijie, H.B. Luong, J.S. Kim, B.K. Kim, J.C. Kim, Synthesis and characterization of conducting polyaniline-copper composites. J. Nanosci. Nanotechnol. 13, 7728–7733 (2013)

    Article  CAS  Google Scholar 

  33. H.S. Xia, Q. Wang, ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium dioxide composites. Chem. Mater. 14, 2158–2165 (2002)

    Article  CAS  Google Scholar 

  34. M.A. Sangamesha, K. Pushpalatha, G.L. Shekar, Synthesis and characterization of conducting polyaniline/copper selenide nanocomposites. Indian J. Adv. Chem. Sci. 2, 223–227 (2014)

    CAS  Google Scholar 

  35. R.V. Salvatierra, L.G. Moura, M.M. Oliveira, M.A. Pimentab, A.J.G. Zarbina, Resonant Raman spectroscopy and spectroelectrochemistry characterization of carbon nanotubes/polyaniline thin film obtained through interfacial polymerization. J. Raman Spectrosc. 3, 1094–1100 (2012)

    Article  CAS  Google Scholar 

  36. E. Kang, Polyaniline: a polymer with many interesting intrinsic redox states. Progress Polym. Sci 23, 277–324 (1998)

    Article  CAS  Google Scholar 

  37. W. Zheng, L. Hu, L.Y.S. Lee, K.Y. Wong, Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. J. Electroanal. Chem. 781, 155–160 (2016)

    Article  CAS  Google Scholar 

  38. M.U. AnuPrathap, T. Pandiyan, R. Srivastava, Cu nanoparticles supported mesoporous polyaniline and its applications towards non-enzymatic sensing of glucose and electrocatalytic oxidation of methanol. J. Polym. Res. 20, 1–10 (2013)

    Google Scholar 

  39. M.U. AnuPrathap, B. Kaur, R. Srivastava, Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J. Colloid Interface Sci. 370, 144–154 (2012)

    Article  CAS  Google Scholar 

  40. H. Wei, J.J. Sun, L. Guo, X. Li, G.N. Chen, Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode. Chem. Commun. 133, 2842–2844 (2009)

    Article  CAS  Google Scholar 

  41. K. Ghanbari, F. Ahmadi, NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose. Anal. Biochem. 518, 143–153 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. X. Li, J. Yao, F. Liu, H. He, M. Zhou, N. Mao, P. Xiaoa, Y. Zhang, Nickel/copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sens. Actuat. B 181, 501–508 (2013)

    Article  CAS  Google Scholar 

  43. S.L. Luo, F. Su, C.B. Liu, J.X. Li, R.H. Liu, Y. Xiao, Y. Li, X. Liu, A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive non-enzymatic glucose sensor. Talanta 86, 157–163 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. F. Meng, W. Shi, Y. Sun, X. Zhu, G. Wu, C. Ruan, X. Liu, D. Ge, Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detection range. Biosens. Bioelectron. 42, 141–147 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. L. Wang, J. Fu, H. Hou, Y. Song, A facile strategy to prepare Cu2O/Cu electrode as a sensitive enzyme-free glucose sensor. Int. J. Electrochem. Sci. 7, 12587–12600 (2012)

    CAS  Google Scholar 

  46. A. Zhong, X. Luo, L. Chen, S. Wei, Y. Liang, X. Li, Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim. Acta 182, 1197–1204 (2014)

    Article  CAS  Google Scholar 

  47. Y. Ni, J. Xu, Q. Liang, S. Shao, Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens. Actuat. B 250, 491–498 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouafia Belgherbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article “Enzyme-Free Glucose Sensor Based on Star-Like Copper Particles-Polyaniline Composite Film”, written by Ouafia Belgherbi, Dalila Chouder, Delloula Lakhdari, Charif Dehchar, Samiha Laidoudi, Leila Lamiri, Abderrazak Hamam and Lamria Seid, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 29 April 2020 with open access. With the author(s)' decision to step back from Open Choice, the copyright of the article changed on 29 May 2020 to © Springer Science+Business Media, LLC, part of Springer Nature 2020 and the article is forthwith distributed under the terms of copyright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belgherbi, O., Chouder, D., Lakhdari, D. et al. Enzyme-Free Glucose Sensor Based on Star-Like Copper Particles-Polyaniline Composite Film. J Inorg Organomet Polym 30, 2499–2508 (2020). https://doi.org/10.1007/s10904-020-01554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01554-1

Keywords

Navigation