Skip to main content
Log in

Morphological controlled synthesis of micro-/nano-polyaniline

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel, highly efficient and economical route is developed for the synthesis of polyaniline micro-/nanostructure. Materials were characterized by a complementary combination of X-ray diffraction, Scanning electron microscopy, Fourier-transform infrared, and UV-visible spectrophotometer. Morphology of polyaniline can be tailored by varying the structure-directing agents and pH of the synthesis condition. Ethylene glycol and polyethylene glycol formed a three-dimensional flower-like structure whereas block-copolymer (ethylene oxide and propylene oxide based co-polymer EO20PO70EO20) formed leaf-like structure when the synthesis was performed at pH 7. Using these structure-directing agents, nanorod and granular morphologies were obtained when the samples were synthesized at pH 3 and 1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers (Nobel Lecture). Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  2. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  CAS  Google Scholar 

  3. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    Article  CAS  Google Scholar 

  4. Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4:671–675

    Article  CAS  Google Scholar 

  5. Wu CG, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264:1757–1759

    Article  CAS  Google Scholar 

  6. Tawde S, Mukesh D, Yakhmi JV (2002) Redox behavior of polyaniline as influenced by aromatic sulphonate anions: cyclic voltammetry and molecular modeling. Synth Met 125:401–413

    Article  CAS  Google Scholar 

  7. Huh D, Chae M, Bae W, Jo W, Lee T (2007) A soluble self-doped conducting polyaniline graft copolymer as a hole injection layer in polymer light-emitting diodes. Polymer 48:7236–7240

    Article  CAS  Google Scholar 

  8. Liang L, Liu J, Windisch CF, Exarhos GJ, Lin Y (2002) Direct assembly of large arrays of oriented conducting polymer nanowires. Angew Chem Int Ed 41:3665–3668

    Article  CAS  Google Scholar 

  9. Kim BJ, Oh SG, Han MG, Im SS (2000) Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium. Langmuir 16:5841–5845

    Article  CAS  Google Scholar 

  10. Tran HD, D'Arcy JM, Wang Y, Beltramo PJ, Strong VA, Kaner RB (2011) The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J Mater Chem 21:3534–3550

    Article  CAS  Google Scholar 

  11. Lu W, Fadeev AG, Qi BH, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA (2002) Use of ionic liquids for π—conjugated polymer electrochemical devices. Forsyth M Science 297:983–987

    CAS  Google Scholar 

  12. Kaul PB, Day KA, Abramson AR (2007) Application of the three omega method for the thermal conductivity measurement of polyaniline. J Appl Phys 101:83507–83513

    Article  Google Scholar 

  13. Kim SG, Lim JY, Sung JH, Choi HJ, Seo Y (2007) Emulsion polymerized polyaniline synthesized with dodecylbenzene-sulfonic acid and its electrorheological characteristics: temperature effect. Polymer 48:6622–6631

    Article  CAS  Google Scholar 

  14. Choi HJ, Jhon MS (2009) Electrorheology of polymers and nanocomposites. Soft Matter 5:1562–1567

    Article  CAS  Google Scholar 

  15. Liu YD, Fang FF, Choi HJ (2011) Silica nanoparticle decorated polyaniline nanofiber and its electrorheological response. Soft Matter 7:2782–2789

    Article  CAS  Google Scholar 

  16. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett 4:491–496

    Article  CAS  Google Scholar 

  17. Huang J, Virji S, Weiller BH, Kaner RB (2004) Nanostructure polyaniline sensors. Chem Eur J 10:1314–1319

    Article  CAS  Google Scholar 

  18. Ma X, Li G, Wang M, Cheng Y, Bai R, Chen H (2006) Preparation of a nanowire-structured polyaniline composite and gas sensitivity studies. Chem A Eur J 12:3254–3260

    Article  CAS  Google Scholar 

  19. Sukeerthi S, Contractor AQ (1999) Molecualr sensors and sensor arrays based on polyaniline microtubules. Anal Chem 71:2231–2236

    Article  CAS  Google Scholar 

  20. Dispenza C, Lo PC, Belfiore C, Spadaro G, Piazza S (2006) Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly(N-vinyl-2-pyrrolidone). Polymer 47:961–971

    Article  CAS  Google Scholar 

  21. Showkat AM, Lee KP, Gopalan AI, Kim MS, Choi SH, Kang HD (2005) A novel self-assembly approach to form tubular poly(diphenylamine) inside the mesoporous silica. Polymer 46:1804–1812

    Article  CAS  Google Scholar 

  22. Natalia VB, Jaroslav S, Miroslava T, Irina S, Gordana CM (2009) The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer 50:50–56

    Article  Google Scholar 

  23. Wei Z, Zhang L, Yu M, Yang Y, Wan M (2003) Synthesis of TiSe2 Nanotubes/Nanowires. Adv Mater 15:1382–1385

    Article  CAS  Google Scholar 

  24. Miyata QTC, Nishigami S, Ito T, Komatsu S, Norisuye T (2004) Controlling the morphology of polymer blends using periodic irradiation. Nat Mater 3:448–451

    Article  Google Scholar 

  25. MacDiarmid AG, Jones WE, Norris ID, Gao J, Johnson AT, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M (2001) Electrostatically-generated nanofibers of electronic polymers. Synth Met 119:27–30

    Article  CAS  Google Scholar 

  26. Ikegame M, Tajima K, Aida T (2003) Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: hexagonal versus lamellar for recombination of polarons into bipolarons. Angew Chem Int Ed 42:2154–2157

    Article  CAS  Google Scholar 

  27. Huang KZ, Chen MA, Li HL (2002) Preparation and characterization of uniform polyaniline nano-fibrils using the anodic aluminum oxide template. Mater Sci Eng A 328:33–38

    Article  Google Scholar 

  28. Zhang LJ, Wan MX (2003) Self-assembly of polyaniline from nanotubes to hollow microspheres. Adv Funct Mater 13:815–820

    Article  CAS  Google Scholar 

  29. Song GP, Bo J, Guo R (2006) Synthesis of rectangular tubes of polyaniline/NiO composites. Colloid Polym Sci 44:4229–4234

    Google Scholar 

  30. Huang K, Wan MX (2002) Self-assembled polyaniline nanostructures with photoisomerization function. Chem Mater 14:3486–3492

    Article  CAS  Google Scholar 

  31. Wei ZX, Zhang ZM, Wan MX (2002) Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir 18:917–921

    Article  CAS  Google Scholar 

  32. Zhang ZM, Wei ZX, Wan MX (2002) Nanostructures of polyaniline doped with inorganic acids. Macromolecules 35:5937–5942

    Article  CAS  Google Scholar 

  33. Huang L, Wang Z, Wang H, Cheng X, Mitra A, Yan Y (2002) Nafion-bifunctional silica composite proton conductive membranes. J Mater Chem 12:388–391

    Article  CAS  Google Scholar 

  34. Konyushenko EN, Reynaud S, Pellerin V, Trchová M, Stejskal J, Sapurina I (2011) Polyaniline prepared in ethylene glycol or glycerol. Polymer 52:1900–1907

    Article  CAS  Google Scholar 

  35. Yan L, Tao W (2008) Synthesis of achiral PEG-PANI rod-coil block copolymers and their helical superstructures. J Polym Sci Part A Polym Chem 46:12–20

    Article  CAS  Google Scholar 

  36. Zhao W, Ma L, Lu K (2007) Facile synthesis of polyaniline nanofibers in the presence of polyethylene glycol. J Polym Res 14:1–4

    Article  CAS  Google Scholar 

  37. Skotheim TA, Elsenbaumer RL, Reynolds JR (1997) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York, pp 423–435

    Google Scholar 

  38. Zhang XY, Manohar SK (2004) Polyaniline nanofibers: chemical synthesis using surfactants. Chem Commun 4:2360–2361

    Article  Google Scholar 

  39. Wang J, Wang J, Zhang X, Wang Z (2007) Assembly of polyaniline nanostructures. Macromol Rapid Commun 28:84–87

    Article  Google Scholar 

  40. Griffin WC (1949) Classification of surface-active agents by HLB. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  41. Danino D, Talmon Y, Levy H, Beinert G, Zana R (1995) Branched thread-like micelles in an aqueous-solution of a trimeric surfactant. Science 269:1420–1421

    Article  CAS  Google Scholar 

  42. Harada S, Fujita N, Sano T (1988) Kinetic studies of the sphere-rod transition of micelles. J Am Chem Soc 110:8710–8711

    Article  CAS  Google Scholar 

  43. MacDiarmid AG, Epstein AJ (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317–318

    Article  CAS  Google Scholar 

  44. Stejskal J, Kratochv’l P, Jenkins AD (1995) Polyaniline: forms and formation. Collect Czech Chem Commun 60:1747–1755

    Article  CAS  Google Scholar 

  45. Huang J, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew Chem Int Ed 43:5817–5821

    Article  CAS  Google Scholar 

  46. Chiou NR, Epstein AJ (2005) Polyaniline nanofibers prepared by dilute polymerization. Adv Mater 17:1679–1683

    Article  CAS  Google Scholar 

  47. Anilkumar P, Jayakannan M (2006) New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers. Langmuir 22:5952–5957

    Article  CAS  Google Scholar 

  48. Liu J, Wan MX (2001) Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method. J Mater Chem 11:404–407

    Article  CAS  Google Scholar 

  49. Lee KH, Song DH, Park BJ, Chin IJ, Choi HJ (2009) Structures of polyaniline bases: semi-empirical computations. Macromol Theory Simul 18:287–298

    Article  CAS  Google Scholar 

  50. Li W, Zhu M, Zhang Q, Chen D (2006) Expanded conformation of macromolecular chain in polyaniline with one-dimensional nanostructure prepared by interfacial polymerization. Appl Phys Lett 89:103110–103112

    Article  Google Scholar 

  51. Zheng W, Angelopoulos M, Epstein AJ, MacDiarmid AG (1997) Experimental evidence for hydrogen bonding in polyaniline: mechanism of aggregate formation and dependency on oxidation state. Macromolecules 30:2953–2955

    Article  CAS  Google Scholar 

  52. Kang ET, Neoh KG, Tan TC, Khor SH, Tan KL (1990) Structural studies of poly(p-phenyleneamine) and its oxidation. Macromolecules 23:2918–2926

    Article  CAS  Google Scholar 

  53. Stejskal J, Sapurina I, Trchova M, Konyushenko EN, Holler P (2006) The genesis of polyaniline nanotubes. Polymer 47:8253–8262

    Article  CAS  Google Scholar 

  54. Lu FL, Wudl F, Nowak M, Heeger AJ (1986) Phenyl-capped octaaniline (COA): an excellent model for polyaniline. J Am Chem Soc 108:8311–8313

    Article  CAS  Google Scholar 

  55. Wang P, Tan KL, Kang ET, Neoh KG (2002) Preparation and characterization of semi-conductive poly(vinylidene fluoride)/polyaniline blends and membranes. Appl Surf Sci 193:36–45

    Article  CAS  Google Scholar 

  56. Nabid MR, Sedghi R, Jamaat PR, Safari N, Entezami AA (2006) Synthesis of conducting water-soluble polyaniline with iron (III) porphyrin. J Appl Polym Sci 102:2929–2934

    Article  CAS  Google Scholar 

  57. Han J, Song G, Guo R (2007) Nanostructure-based leaf-like polyaniline in the presence of an amphiphilic triblock copolymer. Adv Mater 19:2993–2999

    Article  CAS  Google Scholar 

  58. Dmitrieva E, Dunsch L (2011) How linear is “Linear” polyaniline. J Phys Chem B 115:6401–6411

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Council of Scientific and Industrial Research, New Delhi for financial assistance. Anu Prathap M.U. thanks Ministry of Human Resource and Development, New Delhi and IIT Ropar for fellowship. Authors also thank Prof. M. K. Surappa, Director, IIT Ropar for his encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prathap, M.U.A., Srivastava, R. Morphological controlled synthesis of micro-/nano-polyaniline. J Polym Res 18, 2455–2467 (2011). https://doi.org/10.1007/s10965-011-9662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9662-y

Keywords

Navigation