Skip to main content
Log in

Synthesis of core/shell/shell Fe3O4/SiO2/ZnO nanostructure composite material with cubic magnetic cores and study of the photo-degradation ability of methylene blue

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The Fe3O4/SiO2/ZnO cubes were synthesized with core/shell/shell nanostructure through layer-by-layer chemical technique. At first, the Fe3O4 cubic powder was synthesized by the carbon reduction method. In the next step, the SiO2 shell was produced on Fe3O4 cube particles. Then a layer of ZnO was coated using zinc nitrate hexa-hydrate precursor by co-precipitation route. The Fe3O4/SiO2/ZnO cubes were characterized by XRD, FESEM fitted with EDX, FT-IR, and TEM. Magnetic properties of the prepared composite were studied by VSM. The results indicated that magnetite particles have been successfully coated. The saturation magnetization of the prepared Fe3O4 powder and Fe3O4/SiO2 and Fe3O4/SiO2/ZnO composites were 80, 66, and 48.8 emu/g, respectively. The results showed that the change in surface to volume ratio was effective in photo-catalyst properties of cubes. Also, the synthesized composite showed good photo-degradation ability on the removal of methylene blue (MB). The photo-degradation of methylene blue dye was about 55% in the presence of Fe3O4/SiO2/ZnO cubes under UV irradiation time of 90 min. Four consecutive cycles of MB dye degradation were obtained using Fe3O4/SiO2/ZnO composites. Fe3O4/SiO2/ZnO composite could be recovered using a strong magnetic field and the photo-catalyst particles could be re-used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. science. 293(5528), 269–271 (2001)

    CAS  Google Scholar 

  2. Zhao, W., Ma, W., Chen, C., Zhao, J., Shuai, Z.: Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x B x under visible irradiation. J. Am. Chem. Soc. 126(15), 4782–4783 (2004)

    CAS  Google Scholar 

  3. Sauer, T., Gesconato Neto, G., Jose, H.J., Moreira Rf, P.M.: J Photochem Photobiol A: Chem. 149, 147–154 (2002)

    CAS  Google Scholar 

  4. Nilsson, I., Möller, A., Mattiasson, B., Rubindamayugi, M., Welander, U.: Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzym. Microb. Technol. 38(1), 94–100 (2006)

    CAS  Google Scholar 

  5. Arslan, I., Balcioǧlu, I.A., Bahnemann, D.W.: Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes Pigments. 47(3), 207–218 (2000)

    CAS  Google Scholar 

  6. Lucas, M.S., Peres, J.A.: Degradation of reactive black 5 by Fenton/UV-C and ferrioxalate/H2O2/solar light processes. Dyes Pigments. 74(3), 622–629 (2007)

    CAS  Google Scholar 

  7. Zhang, Y.-R., Wang, S.-Q., Shen, S.-L., Zhao, B.-X.: A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chem. Eng. J. 233, 258–264 (2013)

    CAS  Google Scholar 

  8. Jiang, X., Sun, Y., Liu, L., Wang, S., Tian, X.: Adsorption of CI reactive blue 19 from aqueous solutions by porous particles of the grafted chitosan. Chem. Eng. J. 235, 151–157 (2014)

    CAS  Google Scholar 

  9. Wang, X., Liu, Z., Ye, X., Hu, K., Zhong, H., Yu, J., Jin, M., Guo, Z.: A facile one-step approach to functionalized graphene oxide-based hydrogels used as effective adsorbents toward anionic dyes. Appl. Surf. Sci. 308, 82–90 (2014)

    CAS  Google Scholar 

  10. Dodd, A., McKinley, A., Saunders, M., Tsuzuki, T.: Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J. Nanopart. Res. 8(1), 43 (2006)

    CAS  Google Scholar 

  11. Singh, S., Barick, K., Bahadur, D.: Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4–ZnO nanocomposite. Powder Technol. 269, 513–519 (2015)

    CAS  Google Scholar 

  12. Feng, X., Guo, H., Patel, K., Zhou, H., Lou, X.: High performance, recoverable Fe3O4/ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chem. Eng. J. 244, 327–334 (2014)

    CAS  Google Scholar 

  13. Adams, L.K., Lyon, D.Y., Alvarez, P.J.: Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006)

    CAS  Google Scholar 

  14. Ahmed, S., Rasul, M., Brown, R., Hashib, M.: Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J. Environ. Manag. 92(3), 311–330 (2011)

    CAS  Google Scholar 

  15. Lin, D., Wu, H., Zhang, R., Pan, W.: Enhanced photocatalysis of electrospun Ag−ZnO heterostructured nanofibers. Chem. Mater. 21(15), 3479–3484 (2009)

    CAS  Google Scholar 

  16. Liu, Z., Liu, Z., Cui, T., Li, J., Zhang, J., Chen, T., Wang, X., Liang, X.: Photocatalysis of two-dimensional honeycomb-like ZnO nanowalls on zeolite. Chem. Eng. J. 235, 257–263 (2014)

    CAS  Google Scholar 

  17. Beydoun, D., Amal, R., Low, G.K.-C., McEvoy, S.: Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J. Phys. Chem. B. 104(18), 4387–4396 (2000)

    CAS  Google Scholar 

  18. Wang, J., Yang, J., Li, X., Wei, B., Wang, D., Song, H., Zhai, H., Li, X.: Synthesis of Fe3O4@SiO2@ ZnO–Ag core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under UV irradiation. J. Mol. Catal. A Chem. 406, 97–105 (2015)

    CAS  Google Scholar 

  19. Seong, S., Jung, Y.C., Lee, T., Park, I.-S., Ahn, J.: Fabrication of Fe3O4-ZnO core-shell nanoparticles by rotational atomic layer deposition and their multi-functional properties. Curr. Appl. Phys. 16(12), 1564–1570 (2016)

    Google Scholar 

  20. Wan, J., Li, H., Chen, K.: Synthesis and characterization of Fe3O4@ ZnO core–shell structured nanoparticles. Mater. Chem. Phys. 114(1), 30–32 (2009)

    CAS  Google Scholar 

  21. Pang, S.C., Kho, S.Y., Chin, S.F.: Fabrication of magnetite/silica/titania core-shell nanoparticles. J. Nanomater. 2012, 125 (2012)

    Google Scholar 

  22. Bavarsiha, F., Rajabi, M., Montazeri-Pour, M.: Synthesis of SrFe12O19/SiO2/TiO2 composites with core/shell/shell nano-structure and evaluation of their photo-catalytic efficiency for degradation of methylene blue. J. Mater. Sci. Mater. Electron. 1–11 (2017)

  23. Wang, D., Han, D., Yang, J., Wang, J., Li, X., Song, H.: Controlled preparation of superparamagnetic Fe3O4@SiO2@ZnO-Au core-shell photocatalyst with superior activity: RhB degradation and working mechanism. Powder Technol. 327, 489–499 (2018)

    CAS  Google Scholar 

  24. Wang, D., Han, D., Shi, Z., Wang, J., Yang, J., Li, X., Song, H.: Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications. Appl. Catal. B Environ. 227, 61–69 (2018)

    CAS  Google Scholar 

  25. Yang, J., Wang, J., Li, X., Wang, D., Song, H.: Synthesis of urchin-like Fe3O4@SiO2@ZnO/CdS core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under visible light. Catal Sci Technol. 6(12), 4525–4534 (2016)

    CAS  Google Scholar 

  26. Cheng, J., Ma, R., Li, M., Wu, J., Liu, F., Zhang, X.: Anatase nanocrystals coating on silica-coated magnetite: role of polyacrylic acid treatment and its photocatalytic properties. Chem. Eng. J. 210, 80–86 (2012)

    CAS  Google Scholar 

  27. Huang, X., Wang, G., Yang, M., Guo, W., Gao, H.: Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Mater. Lett. 65(19), 2887–2890 (2011)

    CAS  Google Scholar 

  28. Abbas, M., Rao, B.P., Reddy, V., Kim, C.: Fe3O4/TiO2 core/shell nanocubes: single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram. Int. 40(7), 11177–11186 (2014)

    CAS  Google Scholar 

  29. Abbas, M., Takahashi, M., Kim, C.: Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. J. Nanopart. Res. 15(1), 1354 (2013)

    Google Scholar 

  30. Zhang, Q., Gao, L.-B., Li, J.-Y., Guo, Z.-B., Hai, Z.-Y., Xing, Y.-T., Xue, C.-Y.: Synthesis of magnetic carrier sub-microparticles with high stability through carbon reduction and solation coating methods. Rare Metals. 35(11), 870–873 (2016)

    CAS  Google Scholar 

  31. Wang, Z., Shen, L., Zhu, S.: Synthesis of Core-Shell@@ microspheres and their application as recyclable photocatalysts. Int J Photoenergy. 2012, (2012)

  32. Li, J., Gao, L., Zhang, Q., Feng, R., Xu, H., Wang, J., Sun, D., Xue, C.: Photocatalytic property of Fe3O4/SiO2/TiO2 core-shell nanoparticle with different functional layer thicknesses. J. Nanomater. 2, 2014, (2014)

  33. Wang, Y., Sun, D., Liu, G., Jiang, W.: Synthesis of Fe3O4@SiO2@ZnO core–shell structured microspheres and microwave absorption properties. Adv. Powder Technol. 26(6), 1537–1543 (2015)

    CAS  Google Scholar 

  34. Sun, X., Liu, F., Sun, L., Wang, Q., Ding, Y.: Well-dispersed Fe3O4/SiO2 nanoparticles synthesized by a mechanical stirring and ultrasonication assisted Stöber method. J. Inorg. Organomet. Polym. Mater. 22(2), 311–315 (2012)

    CAS  Google Scholar 

  35. Deng, Y.-H., Wang, C.-C., Hu, J.-H., Yang, W.-L., Fu, S.-K.: Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf. A Physicochem. Eng. Asp. 262(1), 87–93 (2005)

    CAS  Google Scholar 

  36. Fu, J.-R., Zheng, J., Fang, W.-J., Chen, C., Cheng, C., Yan, R.-W., Huang, S.-G., Wang, C.-C.: Synthesis of porous magnetic Fe3O4/Fe@ ZnO core–shell heterostructure with superior capability for water treatment. J. Alloys Compd. 650, 463–469 (2015)

    CAS  Google Scholar 

  37. Xing, S., Zhou, Z., Ma, Z., Wu, Y.: Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2. Appl. Catal. B Environ. 107(3–4), 386–392 (2011)

  38. Hamad, H., El-Latif, M.A., Kashyout, A.E.-H., Sadik, W., Feteha, M.: Synthesis and characterization of core–shell–shell magnetic (CoFe2O4–SiO2–TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation. New J. Chem. 39(4), 3116–3128 (2015)

    CAS  Google Scholar 

  39. Zou, J., Peng, Y.-G., Tang, Y.-Y.: A facile bi-phase synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable film thicknesses. RSC Adv. 4(19), 9693–9700 (2014)

    CAS  Google Scholar 

  40. Kari, M., Montazeri-Pour, M., Rajabi, M., Tizjang, V., Moghadas, S.: Maximum SiO2 layer thickness by utilizing polyethylene glycol as the surfactant in synthesis of core/shell structured TiO2–SiO2 nano-composites. J. Mater. Sci. Mater. Electron. 25(12), 5560–5569 (2014)

    CAS  Google Scholar 

  41. Tizjang, V., Montazeri-Pour, M., Rajabi, M., Kari, M., Moghadas, S.: Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci. Mater. Electron. 26(5), 3008–3019 (2015)

    CAS  Google Scholar 

  42. Osman, H., Su, Z., Ma, X., Liu, S., Liu, X., Abduwayit, D.: Synthesis of ZnO/C nanocomposites with enhanced visible light photocatalytic activity. Ceram. Int. 42(8), 10237–10241 (2016)

    CAS  Google Scholar 

  43. Montazeri-Pour, M., Ataie, A.: Low temperature crystallization of barium ferrite nano-particles via co-precipitation method using diethylene glycol. Int J Modern Physics B. 22(18n19), 3144–3152 (2008)

    CAS  Google Scholar 

  44. Kumar, D.A., Shyla, J.M., Xavier, F.P.: Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications. Appl. Nanosci. 2(4), 429–436 (2012)

    Google Scholar 

  45. Kim, W.-I., Hong, I.-K.: Synthesis of monolithic titania-silica composite aerogels with supercritical drying process. J. Ind. Eng. Chem. 9(6), 728–734 (2003)

    CAS  Google Scholar 

  46. Greene, D., Serrano-Garcia, R., Govan, J., Gun'ko, Y.: Synthesis characterization and photocatalytic studies of cobalt ferrite-silica-titania nanocomposites. Nanomaterials. 4(2), 331–343 (2014)

    CAS  Google Scholar 

  47. Wang, X., Cai, W., Wang, G., Wu, Z., Zhao, H.: One-step fabrication of high performance micro/nanostructured Fe3S4–C magnetic adsorbent with easy recovery and regeneration properties. CrystEngComm. 15(15), 2956–2965 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biosphere Technology Company and all experiments were performed in the Environmental Laboratory of the Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rajabi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemy-Piranloo, F., Bavarsiha, F., Dadashian, S. et al. Synthesis of core/shell/shell Fe3O4/SiO2/ZnO nanostructure composite material with cubic magnetic cores and study of the photo-degradation ability of methylene blue. J Aust Ceram Soc 56, 507–515 (2020). https://doi.org/10.1007/s41779-019-00359-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00359-x

Keywords

Navigation