Skip to main content
Log in

Effect of Non-aqueous Media on Nano-crystalline SrFe12O19 Particles Produced by Co-precipitation with Metal Chlorides and Evaluation of Their Magnetic and Photocatalytic Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The strontium ferrite nano-crystals were prepared via co-precipitation method in different synthesis media including a mixture of ethanol and water (with a volume ratio equal to 3:1) and water. In this way, the iron and strontium chlorides with various molar ratios were utilized as sources for Fe3+ and Sr2+ ions, respectively. Phase analyses, structural properties and morphology of the SrFe12O19 powders were characterized by various techniques including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer and Fourier transform infrared spectra. Thermal decomposition behaviors of the as-synthesized precursors were monitored by DTA/TGA (differential thermal analysis/thermo-gravimetric analysis). The effects of molar ratio, calcination temperature and co-precipitation media of the strontium ferrite powder were investigated. The results of DTA indicated that the strontium hexaferrite prepared by co-precipitation in ethanol/water media was formed at a lower temperature. The maximum saturation magnetization of the strontium ferrite powder with the value of 58 emu/g was achieved at a temperature of 950 °C by a Fe3+/Sr2+ molar ratio of 12. Wide coercivity in the range of 1512–5764 Oe was observed by tuning calcination temperatures. Furthermore, the photocatalytic properties of the resultant optimum SrFe12O19 particles were assessed. The destruction of methylene blue dye was about 46% in the presence of the strontium ferrite under UV light irradiation for 120 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Cunningham, G. Al-Sayyed, S. Srijaranai, Adsorption of model pollutants onto TiO2 particles in relation to photoremediation of contaminated water, in Aquatic and Surface Photochemistry, ed. by G.R. Helz, R.G. Zepp, D.G. Crosby (CRC Press, Boca Raton, 1994), pp. 317–348. (Reissued 2018)

    Google Scholar 

  2. R.J. Tayade, P.K. Surolia, R.G. Kulkarni, R.V. Jasra, Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci. Technol. Adv. Mater. 8, 455–462 (2007)

    CAS  Google Scholar 

  3. C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl. Catal. Gen. 304, 55–61 (2006)

    CAS  Google Scholar 

  4. P. Shukla, I. Fatimah, S. Wang, H.M. Ang, M.O. Tadé, Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater. Catal. Today 157, 410–414 (2010)

    CAS  Google Scholar 

  5. R.L. Pozzo, M.A. Baltanás, A.E. Cassano, Supported titanium oxide as photocatalyst in water decontamination: state of the art. Catal. Today 39, 219–231 (1997)

    CAS  Google Scholar 

  6. T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang, A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Appl. Surf. Sci. 288, 51–59 (2014)

    CAS  Google Scholar 

  7. Z. Teng, X. Su, G. Chen, C. Tian, H. Li, L. Ai, G. Lu, Superparamagnetic high-magnetization composite microspheres with Fe3O4@SiO2 core and highly crystallized mesoporous TiO2 shell. Colloid Surf. Physicochem. Eng. Asp. 402, 60–65 (2012)

    CAS  Google Scholar 

  8. F. Ghasemy-Piranloo, F. Bavarsiha, S. Dadashian and M. Rajabi, Synthesis of core/shell/shell Fe3O4/SiO2/ZnO nanostructure composite material with cubic magnetic cores and study of the photo-degradation ability of methylene blue. J. Aust. Ceram. Soc. (2019). https://doi.org/10.1007/s41779-019-00359-x

    Article  Google Scholar 

  9. F. Bavarsiha, M. Rajabi, M. Montazeri-Pour, Synthesis of SrFe12O19/SiO2/TiO2 composites with core/shell/shell nano-structure and evaluation of their photo-catalytic efficiency for degradation of methylene blue. J. Mater. Sci.: Mater. Electron. 29, 1877–1887 (2018)

    CAS  Google Scholar 

  10. A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, Hexagonal SrFe12O19 ferrites: hydrothermal synthesis and their sintering properties. J. Magn. Magn. Mater. 332, 186–191 (2013)

    CAS  Google Scholar 

  11. O. Mohanta, Y. Singhbabu, S. Giri, D. Dadhich, N. Das, R.K. Sahu, Degradation of Congo red pollutants using microwave derived SrFe12O19: an efficient magnetic photocatalyst under visible light. J. Alloys Compd. 564, 78–83 (2013)

    CAS  Google Scholar 

  12. K. Mohammadi, M. Sadeghi, R. Azimirad, Facile synthesis of SrFe12O19 nanoparticles and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 28, 10042–10047 (2017)

    CAS  Google Scholar 

  13. A. Farghali, M. Khedr, A. Moustafa, Photocatalytic activity and magnetic properties of nanocrystallite strontium hexaferrite prepared by self-flash combustion. Mater. Technol. 23, 104–109 (2008)

    CAS  Google Scholar 

  14. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    CAS  Google Scholar 

  15. S. Rowley, Y.-S. Chai, S.-P. Shen, Y. Sun, A. Jones, B. Watts, J.F. Scott, Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19. Sci. Rep. 6, 25724 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Stäblein, Hard ferrites and plastoferrites. Handb. Ferromagn. Mater. 3, 441–602 (1982)

    Google Scholar 

  17. V. Pankov, M. Pernet, P. Germi, P. Mollard, Fine hexaferrite particles for perpendicular recording prepared by the coprecipitation method in the presence of an inert component. J. Magn. Magn. Mater. 120, 69–72 (1993)

    CAS  Google Scholar 

  18. H. Lu, R. Hong, H. Li, Influence of surfactants on co-precipitation synthesis of strontium ferrite. J. Alloys Compd. 509, 10127–10131 (2011)

    CAS  Google Scholar 

  19. M. Montazeri-Pour, A. Ataie, R. Nikkhah-Moshaie, Synthesis of nano-crystalline barium hexaferrite using a reactive co-precipitated precursor. IEEE Trans. Magn. 44, 4239–4242 (2008)

    CAS  Google Scholar 

  20. C. Surig, K. Hempel, D. Bonnenberg, Hexaferrite particles prepared by sol-gel technique. IEEE Trans. Magn. 30, 4092–4094 (1994)

    Google Scholar 

  21. A. Drmota, M. Drofenik, A. Žnidaršič, Synthesis and characterization of nano-crystalline strontium hexaferrite using the co-precipitation and microemulsion methods with nitrate precursors. Ceram. Int. 38, 973–979 (2012)

    CAS  Google Scholar 

  22. A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method. J. Eur. Ceram. Soc. 21, 1951–1955 (2001)

    CAS  Google Scholar 

  23. H. Kojima, Fundamental properties of hexagonal ferrites with magnetoplumbite structure. Handb. Ferromagn. Mater. 3, 305–391 (1982)

    Google Scholar 

  24. H.-F. Yu, K.-C. Huang, Effects of pH and citric acid contents on characteristics of ester-derived BaFe12O19 powder. J. Magn. Magn. Mater. 260, 455–461 (2003)

    CAS  Google Scholar 

  25. S. Kulkarni, J. Shrotri, C. Deshpande, S. Date, Synthesis of chemically coprecipitated hexagonal strontium-ferrite and its characterization. J. Mater. Sci. 24, 3739–3744 (1989)

    CAS  Google Scholar 

  26. H. Su, Y. Xie, B. Li, X. Liu, Y. Qian, A novel one-step solvothermal route to nanocrystalline Sn4P3. J. Solid State Chem. 146, 110–113 (1999)

    CAS  Google Scholar 

  27. M. Montazeri-Pour, A. Ataie, Synthesis of nanocrystalline barium ferrite in ethanol/water media. J. Mater. Sci. Technol. 25, 465–469 (2009)

    CAS  Google Scholar 

  28. A. Ataie, M. Montazeri-Pour, Formation mechanism of BaFe12O19 nanoparticles processed via wet chemical route using mixed solvent. Int. J. Nanosci. 10, 1083–1086 (2011)

    CAS  Google Scholar 

  29. A. Davoodi, B. Hashemi, Investigation of the effective parameters on the synthesis of strontium hexaferrite nanoparticles by chemical coprecipitation method. J. Alloys Compd. 512, 179–184 (2012)

    CAS  Google Scholar 

  30. G. Tan, X. Chen, Structure and multiferroic properties of barium hexaferrite ceramics. J. Magn. Magn. Mater. 327, 87–90 (2013)

    CAS  Google Scholar 

  31. M. Kari, M. Montazeri-Pour, M. Rajabi, V. Tizjang, S. Moghadas, Maximum SiO2 layer thickness by utilizing polyethylene glycol as the surfactant in synthesis of core/shell structured TiO2–SiO2 nano-composites. J. Mater. Sci.: Mater. Electron. 25, 5560–5569 (2014)

    CAS  Google Scholar 

  32. M. Ganjali, M. Ganjali, A. Eskandari, M. Aminzare, Effect of heat treatment on structural and magnetic properties of nanocrystalline SrFe12O19 hexaferrite synthesized by Co-precipitation method. J. Adv. Mater. Process 1, 41–48 (2013)

    Google Scholar 

  33. E. Kiani, A.S. Rozatian, M.H. Yousefi, Synthesis and characterization of SrFe12O19 nanoparticles produced by a low-temperature solid-state reaction method. J. Mater. Sci.: Mater. Electron. 24, 2485–2492 (2013)

    CAS  Google Scholar 

  34. S. Tyagi, R.C. Agarwala, V. Agarwala, A comparative study on the morphology and magnetic properties of barium and strontium hexaferrite nanoparticles synthesized by co-precipitation method. Adv. Mater. Res. 67, 203–208 (2009)

    CAS  Google Scholar 

  35. M. Hessien, M. Rashad, K. El-Barawy, Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J. Magn. Magn. Mater. 320, 336–343 (2008)

    CAS  Google Scholar 

  36. N. Kumar, A. Kumar, R. Jha, A. Dogra, R. Pasricha, R. Kotnala, H. Kishan, V. Awana, Impact of particle size on room temperature ferrimagnetism of SrFe12O19. J. Supercond. Nov. Magn. 23, 423–427 (2010)

    CAS  Google Scholar 

  37. L. Lutterotti, H. Pilliere, C. Fontugne, P. Boullay, D. Chateigner, Full-profile search-match by the Rietveld method. J. Appl. Crystallogr. 52, 587–598 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. T.T.V. Nga, N.P. Duong, T.T. Loan, T.D. Hien, Key step in the synthesis of ultrafine strontium ferrite powders (SrFe12O19) by sol–gel method. J. Alloys Compd. 610, 630–634 (2014)

    CAS  Google Scholar 

  39. Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, W.H. Song, Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320, 2746–2751 (2008)

    CAS  Google Scholar 

  40. V. Harikrishnan, P. Saravanan, R. Ezhil Vizhi, D.R. Babu, V.T.P. Vinod, P. Kejzlar, M. Černík, Effect of annealing temperature on the structural and magnetic properties of CTAB-capped SrFe12O19 platelets. J. Magn. Magn. Mater. 401, 775–783 (2016)

    CAS  Google Scholar 

  41. B.H. Toby, R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2012)

    Google Scholar 

  42. E. Roohani, H. Arabi, R. Sarhaddi, S. Sudkhah, A. Shabani, Effect of annealing temperature on structural and magnetic properties of strontium hexaferrite nanoparticles synthesized by sol–gel auto-combustion method. Int. J. Mod. Phys. B 29, 1550190 (2015)

    CAS  Google Scholar 

  43. M.A. Ahmed, N. Helmy, S.I. El-Dek, Innovative methodology for the synthesis of Ba-M hexaferrite BaFe12O19 nanoparticles. Mater. Res. Bull. 48, 3394–3398 (2013)

    CAS  Google Scholar 

  44. G.B. Teh, Y.C. Wong, R.D. Tilley, Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. J. Magn. Magn. Mater. 323, 2318–2322 (2011)

    CAS  Google Scholar 

  45. T.R. Wagner, Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19. J. Solid State Chem. 136, 120–124 (1998)

    CAS  Google Scholar 

  46. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publishing Company Inc, Reading, 1978)

    Google Scholar 

  47. M. Hessien, M. Radwan, M. Rashad, Enhancement of magnetic properties for the barium hexaferrite prepared through ceramic route. J. Anal. Appl. Pyrolysis 78, 282–287 (2007)

    CAS  Google Scholar 

  48. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 40, 7279–7284 (2014)

    CAS  Google Scholar 

  49. W. Roos, Formation of chemically coprecipitated barium ferrite. J. Am. Ceram. Soc. 63, 601–603 (1980)

    CAS  Google Scholar 

  50. Y.-P. Fu, C.-H. Lin, Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwave-induced combustion process. J. Alloys Compd. 386, 222–227 (2005)

    CAS  Google Scholar 

  51. X. Meng, Y. Zhu, S. Xu, T. Liu, Facile synthesis of shell–core polyaniline/SrFe12O19 composites and magnetic properties. RSC Adv. 6, 4946–4949 (2016)

    CAS  Google Scholar 

  52. T. Ben Ghzaiel, W. Dhaoui, A. Pasko, F. Mazaleyrat, Effect of non-magnetic and magnetic trivalent ion substitutions on BaM-ferrite properties synthesized by hydrothermal method. J. Alloys Compd. 671, 245–253 (2016)

    CAS  Google Scholar 

  53. M.A. Almessiere, Y. Slimani, H. Güngüneş, A. Baykal, S.V. Trukhanov, A.V. Trukhanov, Manganese/Yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and mossbauer spectra. Nanomaterials 9, 24 (2018)

    PubMed Central  Google Scholar 

  54. M. Asghari, A. Ghasemi, E. Paimozed, Microwave and magnetic analysis of substituted SrFe12O19/multi-walled carbon nanotubes. Curr. Nanosci. 8, 239–243 (2012)

    CAS  Google Scholar 

  55. V. Tizjang, M. Montazeri-Pour, M. Rajabi, M. Kari, S. Moghadas, Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci.: Mater. Electron. 26, 3008–3019 (2015)

    CAS  Google Scholar 

  56. S. Xing, Z. Zhou, Z. Ma, Y. Wu, Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2. Appl. Catal. B 107, 386–392 (2011)

    CAS  Google Scholar 

  57. W. Zhanyong, Z. Liuming, L. Jieli, Q. Huichun, Z. Yuli, F. Yongzheng, J. Minglin, X. Jiayue, Microwave-assisted synthesis of SrFe12O19 hexaferrites. J. Magn. Magn. Mater. 322, 2782–2785 (2010)

    Google Scholar 

  58. M. Bahgat, F. Awan, H. Hanafy, The influence of reaction parameters on magnetic properties of synthesized strontium ferrite. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 9, 1043–1047 (2015)

    Google Scholar 

  59. M. George, A. Mary John, S.S. Nair, P.A. Joy, M.R. Anantharaman, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006)

    CAS  Google Scholar 

  60. S. Cho, K. Jeon, J. Kim, K.H. Kim, J. Kim, Synthesis and Ferromagnetic Properties of Magnetic Ink for Direct Printing. IEEE Trans. Magn. 47, 3157–3159 (2011)

    CAS  Google Scholar 

  61. D. Lisjak, M. Drofenik, The influence of the coprecipitation conditions on the low-temperature formation of barium hexaferrite. J. Mater. Sci. 42, 8606–8612 (2007)

    CAS  Google Scholar 

  62. S.E. Jacobo, L. Civale, M.A. Blesa, Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate (VI) solutions. J. Magn. Magn. Mater. 260, 37–41 (2003)

    CAS  Google Scholar 

  63. D.D. Mishra, G. Tan, Visible photocatalytic degradation of methylene blue on magnetic SrFe12O19. J. Phys. Chem. Solids 123, 157–161 (2018)

    CAS  Google Scholar 

  64. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Iran National Science Foundation (INSF) for financially supporting this research work under Contract Number of 94/sad/42699 on 9/11/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Montazeri-Pour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavarsiha, F., Montazeri-Pour, M. & Rajabi, M. Effect of Non-aqueous Media on Nano-crystalline SrFe12O19 Particles Produced by Co-precipitation with Metal Chlorides and Evaluation of Their Magnetic and Photocatalytic Properties. J Inorg Organomet Polym 30, 2386–2396 (2020). https://doi.org/10.1007/s10904-019-01414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01414-7

Keywords

Navigation