Skip to main content
Log in

Arsenene Nanotube as a Chemical Sensor to Detect the Presence of Explosive Vapors: A First-Principles Insight

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The explosive vapors like 2,4-dinitrotoluene, M-dinitrobenzene, 2,4,6-trinitrophenol, and 2,4,6-trinitrotoluene are detected with the aid of arsenene nanotube (As-NT). In order to identify the adsorption capability of explosive vapors on arsenene nanotube, its electronic properties are explored. The transmission of electrons between the As-NT and the explosive vapors are affirmed from the density of states spectrum and charge transfer. Moreover, the adsorption energy, energy band gap and Bader charge transfer of the isolated and explosive vapors adsorbed on As-NT validate the adsorption behavior. The findings suggest that the trace level of explosive vapors can be sensed using chemi-resistive based As-NT nanosensor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Zhang, Q. Xue, M. Shan, Z. Jiao, X. Zhou, C. Ling, Z. Yan, Adsorption and catalytic activation of o2 molecule on the surface of au-doped graphene under an external electric field. J. Phys. Chem. C 116, 19918–19924 (2012)

    Article  CAS  Google Scholar 

  2. T.P. Kaloni, G. Schreckenbach, M.S. Freund, Large enhancement and tunable band gap in silicene by small organic molecule adsorption. J. Phys. Chem. C 118(40), 23361–23367 (2014)

    Article  CAS  Google Scholar 

  3. J. Prasongkit, R.G. Amorim, S. Chakraborty, R. Ahuja, R.H. Scheicher, V. Amornkitbamrung, Highly sensitive and selective gas detection based on silicene. J. Phys. Chem. C 119, 16934–16940 (2015)

    Article  CAS  Google Scholar 

  4. V. Nagarajan, R. Chandiramouli, Alcohol molecules adsorption on graphene nanosheets—a first principles investigation. Appl. Surf. Sci. 441, 734 (2018)

    Article  CAS  Google Scholar 

  5. V. Nagarajan, R. Chandiramouli, Investigation on adsorption properties of CO and NO gas molecules on aluminene nanosheet: a density functional application. Mater. Sci. Eng. B 229, 193 (2018)

    Article  CAS  Google Scholar 

  6. S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. 127, 1–5 (2015)

    Article  CAS  Google Scholar 

  7. C. Kamal, M. Ezawa, Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91(8), 085423 (2015)

    Article  Google Scholar 

  8. H. Tsai, S. Wang, C. Hsiao, C. Chen, H. Ouyang, Y. Chueh, H. Kuo, J. Liang, Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem. Mater. 28, 425–429 (2016)

    Article  CAS  Google Scholar 

  9. W. Tian, S. Zhang, C. Huo, D. Zhu, Q. Li, L. Wang, X. Ren, L. Xie, S. Guo, P.K. Chu, H. Zeng, K. Huo, Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-Ion batteries. ACS Nano 12, 1887–1893 (2018)

    Article  CAS  Google Scholar 

  10. S. Zhang, Y. Hu, Z. Hu, B. Cai, H. Zeng, Hydrogenated arsenenes as planar magnet and Dirac material. J. Appl. Phys. 107, 022102 (2015)

    Google Scholar 

  11. S. Zhang, M. Xie, B. Cai, H. Zhang, Y. Ma, Z. Chen, Z. Zhu, Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain. Phys. Rev. B 93, 245303 (2016)

    Article  Google Scholar 

  12. S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem. Int. Ed. 55, 1666–1669 (2016)

    Article  CAS  Google Scholar 

  13. S. Zhang, S. Guo, Z. Chen, Y. Wang, Recent progress in 2D group-VA semiconductors from theory to experiment. Chem. Soc. Rev. 47, 982 (2018)

    Article  CAS  Google Scholar 

  14. L. Kou, X. Tan, T. Frauenheim, A. Du, S. Smith, Structural and electronic properties of layered arsenic and antimony arsenide. J. Phys. Chem. C 119, 6918–6922 (2015)

    Article  CAS  Google Scholar 

  15. Y. Wang, Y. Ding, Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: a first principle study. Nanoscale Res. Lett. 10, 254 (2015)

    Article  Google Scholar 

  16. Y. Wang, W. Ji, C. Zhang, P. Li, F. Li, M. Ren, X. Chen, M. Yuan, P. Wang, Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene. Sci. Rep. 6, 20342 (2016)

    Article  CAS  Google Scholar 

  17. W. Xu, P. Lu, C. Yang, Y. Song, P. Guan, L. Han, S. Wang, Electronic and optical properties of arsenene under uniaxial strain. IEEE J. 23(1), 214–218 (2017)

    Google Scholar 

  18. D. Kecik, E. Durgun, S. Ciraci, Optical properties of single-layer and bilayer arsenene phases. Phys. Rev. B 94, 205410 (2016)

    Article  Google Scholar 

  19. A.L. Chen, S.P. Lewis, Z. Su, P.Y. Yu, M.L. Cohen, Superconductivity in arsenic at high pressures. Phys. Rev. B 46(9), 5523 (1992)

    Article  CAS  Google Scholar 

  20. X. Kong, M. Gao, X. Yan, Z. Lu, T. Xiang, Superconductivity in electron-doped arsenene. Chin. Phys. B 27(4), 046301 (2018)

    Article  Google Scholar 

  21. S. Singh, Sensors—an effective approach for the detection of explosives. J. Hazard. Mater. 144, 15–28 (2007)

    Article  CAS  Google Scholar 

  22. Drinking Water Health, Advisory for 2.4-Dinitrotoluene and 2,6-Dinitrotoluene. EPA 822-R-08-010 (2008)

  23. J.B. Hughes, C.Y.U.E. Wang, Anaerobic biotransformation of 2,4-dinitrotoluene and 2,6-dinitrotoluene by clostridium acetobutylicum: a pathway through dihydroxylamino intermediates. Environ. Sci. Technol. 33, 1065–1070 (1999)

    Article  CAS  Google Scholar 

  24. M. Soler, E. Artacho, J.D. Gale, A. Garc, J. Junquera, P. Ordej, S. Daniel, The SIESTA method for ab initio order-N materials simulation. J. Phys. 14(11), 2745 (2002)

    CAS  Google Scholar 

  25. J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange- correlation hole of a many- electron system. Phys. Rev. B 54(23), 16533 (1996)

    Article  CAS  Google Scholar 

  26. J.P. Perdew, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 11, 46 (1992)

    Google Scholar 

  27. S. Grimme, Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1, 211–228 (2011)

    Article  CAS  Google Scholar 

  28. S. Haldar, R.G. Amorim, B. Sanyal, R.H. Scheicher, A.R. Rocha, Energetic stability, STM fingerprints and electronic transport properties of defects in graphene and silicene. RSC Adv. 6, 6702 (2016)

    Article  CAS  Google Scholar 

  29. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5118 (1976)

    Article  Google Scholar 

  30. R. Bhuvaneswari, R. Chandiramouli, DFT investigation on the adsorption behavior of dimethyl and trimethyl amine molecules on borophene nanotube. Chem. Phys. Lett. 701, 34 (2018)

    Article  CAS  Google Scholar 

  31. V. Nagarajan, R. Chandiramouli, Novel method to detect the lung cancer biomarker volatiles using hydrogen vacant silicane nanosheets: a DFT investigation. Comput. Theor. Chem. 1138, 107 (2018)

    Article  CAS  Google Scholar 

  32. A.A. Peyghan, M. Noei, S. Yourdkhani, Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices Microstruct. 59, 115 (2013)

    Article  CAS  Google Scholar 

  33. U. Srimathi, V. Nagarajan, R. Chandiramouli, Interaction of Imuran, Pentasa and Hyoscyamine drugs and solvent effects on graphdiyne nanotube as a drug delivery system—a DFT study. J. Mol. Liq. 265, 199 (2018)

    Article  CAS  Google Scholar 

  34. U. Srimathi, V. Nagarajan, R. Chandiramouli, Adsorption studies of volatile organic compounds on germanene nanotube emitted from banana fruit for quality assessment—a density functional application. J. Mol. Graph. Model. 82, 129–136 (2018)

    Article  CAS  Google Scholar 

  35. A. Ahmadi, S.F. Rastegar, N.L. Hadipour, DFT study of NH3 adsorption on pristine, Ni- and Si- doped graphynes. Phys. Lett. A 1, 3 (2014)

    Google Scholar 

  36. J. Beheshtian, M. Noei, H. Soleymanabadi, A. Ahmadi, Ammonia monitoring by carbon nitride nanotubes: a density functional study. Thin Solid Films 534, 650 (2013)

    Article  CAS  Google Scholar 

  37. A.A. Peyghan, N.L. Hadipour, Z. Bagheri, Effects of Al doping and double- antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J. Phys. Chem. C 117, 2427–2432 (2013)

    Article  Google Scholar 

  38. U. Srimathi, V. Nagarajan, R. Chandiramouli, Detection of nucleobases using 2D germanene nanosheet: a first-principles study. Comput. Theor. Chem. 1130, 68–76 (2018)

    Article  CAS  Google Scholar 

  39. V. Nagarajan, A. Thayumanavan, R. Chandiramouli, DFT application on the interaction properties of ethanol vapors with MnFe2O4 nanostructures. J. Inorg. Organomet. Polym. Mater. 28, 1753 (2018)

    Article  CAS  Google Scholar 

  40. V. Nagarajan, R. Chandiramouli, Interaction studies of ammonia gas molecules on borophene nanosheet and nanotubes: a density functional study. J. Inorg. Organomet. Polym. Mater. 28, 920 (2018)

    Article  CAS  Google Scholar 

  41. H. Ullah, K. Ayub, Z. Ullah, M. Hanif, R. Nawaz, A.A. Shah, S. Bilal, Theoretical insight of polypyrrole ammonia gas sensor. Synth. Met. 172, 14–20 (2013)

    Article  CAS  Google Scholar 

  42. V. Nagarajan, R. Chandiramouli, Interaction of volatile organic compounds (VOCs) emitted from banana on stanene nanosheet—a first principle studies. Struct. Chem. (2018). https://doi.org/10.1007/s11224-018-1114-4

    Article  Google Scholar 

  43. V. Nagarajan, S. Dharani, R. Chandiramouli, Density functional studies on the binding of methanol and ethanol molecules to graphyne nanosheet. Comput. Theor. Chem. 1125, 86–94 (2018)

    Article  CAS  Google Scholar 

  44. M.T. Baei, A. Ahmadi, Z. Bagheri, A computational study of AlN nanotube as an oxygen detector. Chin. Chem. Lett. 23, 965–968 (2012)

    Article  CAS  Google Scholar 

  45. Z. Ullah, A. Rauf, M. Tariq, A. Ali, K. Ayub, H. Ullah, Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases. Spectrochim. Acta Part A 141, 71–79 (2015)

    Article  Google Scholar 

  46. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, First principle investigations on switching properties of spiropyran and merocyanine grafted graphyne nanotube device. Chem. Phys. Lett. 691, 37–43 (2018)

    Article  CAS  Google Scholar 

  47. H. Ullah, A.A. Shah, S. Bilal, K. Ayub, Doping and dedoping processes of polypyrrole: DFT study with hybrid functionals. J. Phys. Chem. C 118, 17819–17830 (2014)

    Article  CAS  Google Scholar 

  48. V. Nagarajan, R. Chandiramouli, Adsorption behavior of NH3 and NO2 molecules on stanene and stanane nanosheets—a density functional theory study. Chem. Phys. Lett. 695, 162–169 (2018)

    Article  CAS  Google Scholar 

  49. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, First-principles insights on the electronic and field emission properties of Ga and Al doped germanium nanocones. J. Electron Spectros. Relat. Phenomena 227, 15–22 (2018)

    Article  CAS  Google Scholar 

  50. T.P. Kaloni, Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms. J. Phys. Chem. C 118, 25200 (2014)

    Article  CAS  Google Scholar 

  51. V. Nagarajan, R. Chandiramouli, MoSe2 nanosheets for detection of methanol and ethanol vapors: a DFT study. J. Mol. Graph. Model. 81, 97–105 (2018)

    Article  CAS  Google Scholar 

  52. T.P. Kaloni, M.U. Kahaly, R. Faccio, U. Schwingenschlögl, Modelling magnetism of C at O and B monovacancies in graphene. Carbon 64, 281–287 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to Nano Mission Council (No.SR/NM/NS-1011/2017(G)) Department of Science & Technology, India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, R., Nagarajan, V. & Chandiramouli, R. Arsenene Nanotube as a Chemical Sensor to Detect the Presence of Explosive Vapors: A First-Principles Insight. J Inorg Organomet Polym 28, 2844–2853 (2018). https://doi.org/10.1007/s10904-018-0951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0951-3

Keywords

Navigation