Skip to main content
Log in

Emerging trends in advanced high energy materials

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Enhanced performance of propellants and explosives is the most sought-after attribute for ambitious research programs in the field of high energy materials. Convergence of defence and space sector priorities has always kept research and development efforts in the area of propellants to the forefront. With the diminishing boundaries between rocket and gun propellants, as well as explosives, the possibility of low-vulnerable munitions with high performance potentials and spin-off advantages of research on rocket propellants are also emerging on the forefront. At the same time, an increasing predominance of missiles in today’s military warfare, as well as the space sector, has brought the issue of pollution by chlorine-containing combustion products of modern ammonium-perchlorate-based propellants into focus. A drastic transformation of high energy material technology is in offing. Research and development efforts made in this direction have brought an array of new materials into prominence. This paper reviews the recent work done in the frontier areas of advanced novel high energy materials. This paper covers the global scenario in the development of oxidizers, binders, plasticizers, high energy density materials, and insensitive high energy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Bottaro, “Recent advances in explosives and solid propellants,” Chem. Ind., 249–252 (1996).

  2. G. P. Sollott, J. Alster, E. E. Gilbert, and N. Slagg, “Research towards novel energetic materials,” J. Energ. Mater., 4, 5–28 (1986).

    Google Scholar 

  3. M. Golfier, H. Graindorge, Y. Longevialle, and H. Mace, “New energetic molecules and their applications in the energetic materials,” in: Proc. 29th Int. Annu. Conf. of ICT, Karlsruhe, Germany (1998), pp. 3/1–3/17.

  4. S. Borman, “Advanced energetic materials emerge for military and space applications,” J. Chem. Eng. News, January 17 (1994). P. 18–22.

  5. J. P. Agrawal, Prog. Energ. Combust. Sci., 29, No. 6, 1–30 (1998).

    Article  Google Scholar 

  6. T. L. Boggs, “Combustion of AP and various inorganic additives,” J. Propuls. Power, 4, 27–40 (1988).

    Google Scholar 

  7. J. C. Bottaro, P. E. Penwell, and R. J. Schmitt, “1,1,3,3-tetraoxo-1,2,3-triazapropane anion, a new oxy anion of nitrogen: The dinitramide anion and its salts,” J. Amer. Chem. Soc., 119, 9405–9410 (1997).

    Article  Google Scholar 

  8. P. S. Dendage, S. N. Asthana, and H. Singh, “Eco-friendly energetic oxidizer-hydrazinium nitroformate (HNF) and propellants based on HNF,” J. Indian Chem. Soc., 80, 563–568 (2003).

    Google Scholar 

  9. M. B. Frenkel, L. R. Grant, and J. E. Flanagan, “Historical development of glycidyl azide polymer,” J. Propuls. Power, 18, 560–563 (1992).

    Google Scholar 

  10. E. Kimura and Y. Oyumi, “Effects of polymerization ratio of BAMO/NMMO and catalyst on sensitivity and burning rate of HMX propellant,” Propellants, Explos., Pyrotech., 20, 215–221 (1995).

    Article  Google Scholar 

  11. R. L. Simpson, P. A. Urtiev, D. L. Ornellas, et al., “CL-20 performance exceeds that of HMX and its sensitivity is moderate,” Propellants, Explos., Pyrotech., 22, 249–255 (1997).

    Article  Google Scholar 

  12. A. T. Nielsen, “Caged polynitramine compound,” U.S. Patent No. 5693794, December 2 (1997).

  13. R. B. Wardle and J. C. Hinshaw, “Multi step synthesis of polycyclic polyamides as precursors for polycyclic polynitramine oxidizers in propellants and explosives,” U.K. Patent No. GB 2333292 Al, July 21, 1999.

  14. N. V. Latypov, U. Wellmar, P. Goede, and A. J. Bellamy, “Synthesis and scale-up of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza isowurtzitane from 2,6,8,12-tetraacety-4,10-dibenzyl-2,4,6,8,10,12-hexaaza-isowurtzitane (HNIW, CL-20),” J. Org. Process Res. Dev., 4, 156–158 (2000).

    Article  Google Scholar 

  15. R. S. Hamilton, A. J. Sanderson, R. B. Wardle, and K. F. Warner, “Studies of the synthesis and crystallization of CL-20,” in: Proc. 31st Int. Annu. Conf. of ICT, Karlsruhe, Germany (2000), pp. 21/1–21/8.

  16. M. Geetha, U. R. Nair, D. B. Sarwade, et al., “Thermal studies on CL-20: The most powerful high energy material,” J. Therm. Anal. Calorimetry, 71, 913–922 (2003).

    Article  Google Scholar 

  17. A. K. Sikder, N. Sikder, B. R. Gandhe, et al., “Hexanitrohexaazaisowurtzitane, or CL-20 in India: Synthesis and characterization,” Defence Sci. J., 52, 135–146 (2002).

    Google Scholar 

  18. Zhang M. X., P. E. Eaton, and R. Gilardi, “Hepta-octanitrocubanes,” Angew. Chem. Int. Ed., 39, 401–404 (2000).

    Article  Google Scholar 

  19. D. E. Chavez and M. A. Hiskey, “1,2,4,5-tetrazine based energetic materials,” J. Energ. Mater., 17, 357–377 (1999).

    Google Scholar 

  20. D. E. Chavez, M. A. Hiskey, and R. D. Gilardi, “3,3-azobis-(6-amino-1,2,4,5-tetrazine): A novel high nitrogen energetic materials,” Angew. Chem. Int. Ed., 39, 1791–1793 (2000).

    Article  Google Scholar 

  21. M. A. Hiskey, D. E. Chavez, D. L. Naud, et al., “Progress in high nitrogen chemistry in explosives, propellants and pyrotechnics,” in: Proc. 27th Int. Pyrotechnic Seminar, Grand Junction (2000), pp. 3–14.

  22. J. Kerth and L. Stefen, “Synthesis and characterization of 3,3-azobis (6-amini-1,2,4,5-tetrazine) DAAT: A new promising nitrogen rich compound,” Propellants, Explos., Pyrotech., 27, 111–118 (2002).

    Article  Google Scholar 

  23. R. Sivabalan, M. B. Talawar, S. N. Asthana, et al., “Synthesis and characterization of high nitrogen content high energy materials,” in: Proc. 4th Int. Symp. on High Energy Materials and Exhibits, Pune, India, November 17–19 (2003), pp. 184–191.

  24. K. O. Christe, W. W. Wilson, J. A. Sheehy, and J. A. Boatz, “N +5 : A novel homoleptic polynitrogen ion as a high energy density material,” Angew. Chem. Int. Ed., 38, Nos. 13/14, 2004–2009 (1999).

    Article  Google Scholar 

  25. R. J. Bartlett, “Exploding the mysteries of nitrogen,” Chem. Ind., 4, 140–143 (2000).

    Google Scholar 

  26. S. N. Asthana and T. Mukundan, “Energetic binder systems for advanced propellants,” in: Advances in Solid Propellant Technology, Tata McGraw Hill, India (2002), pp. 61–86.

    Google Scholar 

  27. A. N. Nazare, S. N. Asthana, and H. Singh, “Glycidyl azide polymer (GAP) — an energetic component of advanced solid rocket propellants (A Review),” J. Energ. Mater., 10, 43–63 (1992).

    Google Scholar 

  28. A. Arber, G. Bagg, E. Colcough, et al., “Novel energetic polymers prepared using dinitrogen pentoxide chemistry,” in: Proc. 21st Int. Annu. Conf. of ICT, Karlsruhe, Germany (1990), pp. 3/1–3/11.

  29. J. K. Nair, R. S. Satpute, T. Mukunden, et al., “Synthesis and characterization of bis-azido methyl oxetane (BAMO), its precursors, polymer and copolymer with THF,” Defenc. Sci. J., 52, 147–156 (2002).

    Google Scholar 

  30. J. K. Chen and T. B. Brill, “Thermal decomposition of energetic materials 54, kinetics and near surface products of azide polymers AMMO, BAMO and GAP in simulated combustion,” Combust. Flame, 87, 157–168 (1991).

    Article  Google Scholar 

  31. Y. G. Cheun, J. S. Kim, and B. W. Joe, “A studies on cationic polymerization of energetic oxetane derivatives,” in: Proc. 25th Int. Annu. Conf. of ICT, Karlsruhe, Germany (1994), pp. 71/1–71/9.

  32. R. A. Eart and J. S. Elmslie, “Preparation of hydroxy terminated poly 3,3-bis-azido methyl oxetanes,” U.S. Patent No. 4,405,762 (1983).

  33. Gu Qijiang and Ma Mingzhu, “Synthesis of the PBAMO for gun propellant and double base propellants,” in: Proc. 3rd Int. Symp. on Pyrotechnics and Explosives, Beijing, China (1995), pp. 135–138.

  34. R. A. Earl and R. Douglas, “Synthesis of energetic prepolymers,” U.S. ONR Report, Accession No. ADA 13770 (1985).

  35. R. R. Sanghavi, S. N. Asthana, and H. Singh, “Thermoplastic elastomers (TPEs) as binders for futuristic propellants and explosives: A review,” J. Polymer Mater., 17, 221–232 (2000).

    Google Scholar 

  36. E. Kimura and Y. Oyumi, “Effect of copolymerization of BAMO/NMMO and catalyst on sensitivity and burning rate of HMX propellant,” Propellants, Explos., Pyrotech., 20, 215–221 (1995).

    Article  Google Scholar 

  37. W.-H. Hsieh, A. Peretz, I.-Te Huang, and K. K. Kuo, “Combustion behavior of boron based BAMO/NMMO fuel rich solid propellants,” J. Propulsion, 7, No. 4, 497–504 (1991).

    Article  Google Scholar 

  38. B. Stogkovie and N. Stojanovic, “Synthesis of nitroacetal plasticizers,” Nancno-Tech. Pvegl., 40, 41–46 (1990).

    Google Scholar 

  39. K. G. Shipp and M. E. Hill, “Acetal preparation in sulfuric acid,” J. Org. Chem., 31, 853–859 (1966).

    Google Scholar 

  40. K. Manke, K. Brehler, and B.-P. Jutta, “New chemically bonded ferrocenes for burn rate modification of composite rocket and gas generation propellants,” in: Proc. 26th Int. Annu. Conf. of ICT, Karlsruhe, Germany (1995), pp. 53-1 ff.

  41. S. Raunal and G. Doriath, “New functional prepolymers for high burning rates solid propellants,” in: Proc. AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conf., June 16–18, 1986; AIAA Paper No. 86-1594 (1986).

  42. M. Golfier, H. Graindorge, Y. Longivialle, and H. Mace, “New energetic molecules and their applications as the energetic materials,” in: Proc. 29th Int. Annu. Conf. of ICT, Karlsruhe, Germany, June 30–July 3, 1998, pp. 3/1–3/17.

  43. G. M. Gore, R. G. Bhatewara, K. R. Tipare, et al., “Studies on TMETN: TEGDN plasticizer system and propellants based on them,” in: Proc. 4th Int. High Energy Materials Conference and Exhibit — High Energy Materials: Emerging Trends (HEMCE-2003), pp. 266–275.

  44. G. Huang, S. Tang, and H. Ding, “Recent advances in the research of ferrocene derivatives as burning tate catalysts,” J. Propuls. Technol., 46, 50–75 (1989).

    Google Scholar 

  45. G. Fonblanc and B. Herran, “The maturity of butacene based composite propellants,” in: Proc. Joint Propulsion Conf. (1994); AIAA Paper No. 94-3194.

  46. J. Bohneim-Maus, “Structural influences of ferrocenes on burn rate modification of composite rocket propellant,” in: Proc. 23th Int. Annu. Conf. of ICT, Vol. 26, Karlsruhe, Germany (1993).

  47. G. M. Gore, K. R. Tipare, C. N. Divekar, et al., “Studies on effect of incorporation of BDNPF/A on burning rates of RDX/AP/Al filled CMDB propellants,” J. Energ. Mater., 20, 255–278 (2002).

    Google Scholar 

  48. D. Mueller, “New gun propellant with CL-20,” Propellants, Explos., Pyrotech., 24, 176–181 (1999).

    Article  Google Scholar 

  49. S. Eiselle and K. Menke, “About the burning behavior and other properties of smoke reduced composite propellants based on AP/CL-20/GAP,” in: Proc. 32nd Int. Annu. Conf. of ICT, Karlsruhe, Germany (2001), pp. 149/1–149/18.

  50. C. M. Tarver, R. L. Simpson, and P. A. Urtiew, “Shock initiation of an CL-20—Estane formulation,” in: Proc. AIP Conf., Vol. 370 (Part 2: Shock Compression of Condensed Matter, 1995) (1996), pp. 891–894.

    ADS  Google Scholar 

  51. Y. Tian, R. Xu, Y. Zhou, and F. Nie, “Study on formulation of CL-20,” in: Proc. 4th Int. Autumn Seminar on Propellants, Explosives and Pyrotechnics, Shaoxing, China, 25–28 Oct. (2001), pp. 43–47.

  52. P. S. Dendage, D. B. Sarwade, S. N. Asthana, and H. Singh, “Hydrazinium nitroformate (HNF) and HNF based propellants: A Review,” J. Energ. Mater., 19, 41–78 (2001).

    Google Scholar 

  53. G. Singh, I. P. Kapoor, S. K. Tiwari, and P. S. Felix, “Studies on energetic compounds: Part 16. Chemistry and decomposition mechanisms of 5-nitro-2,4-dihydro-3H-1,2,4-triazole-3-one (NTO),” J. Hazard. Mater., 81, Nos. 1–2, 67–82 (2001).

    Article  Google Scholar 

  54. S. G. Cho, B. S. Park, and J. R. Cho, “Theoretical studies on the structure of 1,2,4,5-tetranitroimidazole,” Propellants, Explos., Pyrotech., 24, 343–348 (1999).

    Article  Google Scholar 

  55. A. J. Bracuti, “Crystal structure of 2,4-dinitroimidazole (2,4DNI),” J. Chem. Crystallogr., 25, 625–627 (1995).

    Article  Google Scholar 

  56. S. C. Cho, Y. G. Cheun, and B. S. Park, “Computational study of imidazole, 4-nitroimidazole, 5-nitroimidazole and 4,5-dinitroimidazole,” J. Mol. Struct.: Theochem., 432, 41–53 (1998).

    Article  Google Scholar 

  57. M. D. Coburn, “Ammonium-2,4,5-trinitroimidazole,” U.S. Patent No. 4028154, June 7 (1977).

  58. D. T. Cromer and C. B. Storm, “Structure of 4,4′,5,5′-tetranitro-2,2′-biimidazole dehydrate,” Acta Crystallogr., C46, 1957–1958 (1990).

    Google Scholar 

  59. D. T. Cromer and C. B. Storm, “Structure of the diammonium salt of 4,4′,5,5′-tetranitro-2,2′-biimidazole, C6N8O8.2NH4,” ibid., pp. 1959–1960.

  60. R. M. Doherty and R. L. Simpson, “A comparative evaluation of several insensitive high explosives,” in: Proc. 28th Int. Annu. Conf. of ICT, Karlsruhe, Germany (1996), pp. 32/1–32/23.

  61. C. L. Jackson and J. F. Wing, “LIX on tribromotrinitrobenzol,” Amer. Chem. J., 10, 283–287 (1888).

    Google Scholar 

  62. A. R. Mitchell, P. F. Pagoria, and R. D. Schimidt, “Vicarious nucleophilic substitution to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene,” U.S. Patent No. 5,569,783, Oct. 29 (1996).

  63. A. R. Mitchell, P. F. Pagoria, and R. D. Schimidt, “Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution,” U.S. Patent No. 6,069,277, May 30 (2000).

  64. A. R. Mitchell, P. F. Pagoria, and R. D. Schimidt, “Vicarious nucleophilic substitution using 4-amino-1,2,4-triazole, hydroxylamine or o-alkylhydroxylamine to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene,” U.S. Patent No. 5, 633, 406, May 27 (1997).

  65. D. C. Sorescu, J. A. Boatz, and D. L. Thompson, “Classical and quantum-mechanical studies of crystalline FOX-7 (1,1-diamino-2,2-dinitroethylene),” J. Phys. Chem. A, 105, No. 20, 5010–5021 (2001).

    Article  Google Scholar 

  66. H. Ostmark, A. Langlet, H. Bergman, et al., “FOX-7_— A new explosive with low sensitivity and high performance,” in: Proc. 11th Int. Detonation Symp., Colorado, USA (1998), p. 807.

  67. P. Politzer, M. C. Concha, M. E. Grice, et al., “Computational investigation of the structure and relative stabilities of amino/nitro derivatives of ethylene,” J. Mol. Struct.: Theochem., 452, Nos. 1–3, 75–83 (1998).

    Article  Google Scholar 

  68. H. Ostmark, H. Bergman, U. Bemm, et al., “2,2-Dinitroethene-1,1-diamine (FOX-7) — Properties, analysis, and scale up,” in: Proc. 32nd Int. Annu. Conf. of ICT, Vol. 26, Karlsruhe, Germany, July 4–July 7 (2001).

  69. N. V. Latypov, J. Bergman, A. Langlet, et al., “Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene,” Tetrahedron, 54, 11525–11536 (1998)

    Google Scholar 

  70. P. F. Pagoria, A. R. Mitchell, R. D. Schmidt, and L. E. Fried, “Synthesis and scale-up of new explosives,” Munitions Technology Development Program, FY 1999 Report, II-5 (1999).

  71. D. Tran, P. F. Pagoria, D. M. Hoffman, et al., “Characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) as an insensitive high explosive material,” in: Proc. 33rd Int. Annu. Conf. of ICT, Karlsruhe, Germany, June 25–June 28 (2002), pp. 45/1–45/16.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 1, pp. 72–85, January–February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talawar, M.B., Sivabalan, R., Anniyappan, M. et al. Emerging trends in advanced high energy materials. Combust Explos Shock Waves 43, 62–72 (2007). https://doi.org/10.1007/s10573-007-0010-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-007-0010-9

Key words

Navigation