Skip to main content
Log in

Physical and Chemical Characterisation of Acrylamide-Based Hydrogels, Aam, Aam/NaCMC and Aam/NaCMC/MgO

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

To find out the best structure of acrylamide-based hydrogels, three different composites are synthesized and characterized. Polyacrylamide-based hydrogels were obtained by chemical crosslinking of MBA using acrylamide, sodium carboxymethylecellulose (NaCMC), N,N,N′,N′-tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as the initiators. The interest in MgO nanoparticles is not only due to their stability under harsh process conditions but also for human health, where they are known to be necessary minerals. It is expected that the structure of the hydrogels can be affected positively by using MgO as a nanoparticle in their composite. To control the initial burst release through modification of the structure of the matrix, the MgO nanoparticles are applied. These nanoparticles can affect the release mechanism. In the current research, FESEM, NMR, DTA/TGA and DSC are studied for the structure of polymers. In the FESEM, existing MgO inside the hydrogel system brings about a shift in the porosity of hydrogels. The 1H NMR spectrum of polymers showed characteristic proton peaks at 4.6 and 4.7, 6.1 and 6.2 ppm. An endothermic peak indicating loss of weakly bound water molecules from the hydrogel network is shown in DTA curves of hydrogels at around 80 °C. An exothermic peak at around 270 °C for Aam and Aam/NaCMC hydrogels and also a peak at 360 °C in Aam and Aam/NaCMC hydrogels and 320 °C for Aam/NaCMC/MgO is shown. The DSC profiles of the hydrogels show that water has a higher evaporation temperature in the polyacrylamide hydrogel (84 °C).The largest depression of the temperature was observed on the Aam/NaCMC/MgO hydrogel (∆T = 94 °C), which confirmed the higher hydrophilicity of Aam/NaCMC/MgO as compared to pure Aam hydrogel and Aam/NaCMC hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FESEM:

Field emission scanning electron microscope

NMR:

Nuclear magnetic resonance spectroscopy

DTA:

Differential thermal analysis

TGA:

Thermogravimetric analysis

DSC:

Differential scanning calorimetry

MgO:

Magnesium oxide

Aam:

Acrylamide

NaCMC:

Sodium carboxymethylcellulose

FDA:

Food and drug administration

BIS:

N,N′-Methylenebisacrylamide

APS:

Ammonium persulfate

AZAP:

Azobis (2-amidinopropane) HCl

AZIP:

Azobis [2-(2-imidazolin-w-yl)propane]HCl

TEMED:

Tetramethyl-ethylene diamine

MMT:

Montmorillonite

FTIR:

Fourier transform infrared spectroscopy

1HNMR:

Proton nuclear magnetic resonance

CDCl3 :

Chloroform-d

D2O:

Deuterium oxide

IDT:

Initial decomposition temperature

FDT:

Final decomposition temperature

UCST:

Upper critical solution temperature.

References

  1. C.C. Lin, A.T. Metters, Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58, 1379–1408 (2006)

    Article  CAS  Google Scholar 

  2. S. Chen, Y. Wu, F. Mi, Y. Lin, L. Yu, H. Sung, A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release 96, 285–300 (2004)

    Article  CAS  Google Scholar 

  3. S. Selvakumaran, I.I. Muhamad, S.I. Abd Razak, Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents. Carbohydr. Polym. 135, 207–214 (2016)

    Article  CAS  Google Scholar 

  4. R.K. Malcolm, K. Edwards, P. Kiser, J. Romano, T.J. Smith, Advances in microbicide vaginal rings. Antiviral Res. 88, 30–39 (2010)

    Article  Google Scholar 

  5. H. Karimi, F. Sabbagh, M. Eslami, H. Sheikhveisi, H. Samadyar, O. Talaee, Numerical modeling and calculation of sensing parameters of DNA sensors. In Advanced Bioelectronic Materials (Wiley, Hoboken, 2015), pp. 389–411

  6. E. Karadag, D. Saraydin, S. Cetinkaya, O. Guven, In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials 17, 67–70 (1996)

    Article  CAS  Google Scholar 

  7. U. Griesenbach, C. Meng, R. Farley, M.Y. Wasowicz, F.M. Munkonge, M. Chan, C. Stoneham, S.G. Sumner-jones, I.A. Pringle, D.R. Gill, S.C. Hyde, B. Stevenson, E. Holder, H. Ban, M. Hasegawa, S.H. Cheng, R.K. Scheule, P.L. Sinn, P.B. Mccray, E.W.F.W. Alton, Biomaterials the use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways. Biomaterials 31, 2665–2672 (2010)

    Article  CAS  Google Scholar 

  8. J.A. Ludwig, J.N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. 5, 845–856 (2005)

    Article  CAS  Google Scholar 

  9. A.P. Rokhade, S.A. Agnihotri, S.A. Patil, N.N. Mallikarjuna, P.V. Kulkarni, T.M. Aminabhavi, Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr. Polym. 65, 243–252 (2006)

    Article  CAS  Google Scholar 

  10. L. Liu, Reconstructing posterior distributions of a species phylogeny using estimated gene tree distributions (2006)

  11. Y. Sudhakar, K. Kuotsu, A.K. Bandyopadhyay, Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J. Control. Release 114, 15–40 (2006)

    Article  CAS  Google Scholar 

  12. E. Karadaǧ, Ö.B. Üzüm, D. Saraydin, Water uptake in chemically crosslinked poly(acrylamide-co-crotonic acid) hydrogels. Mater. Des. 26, 265–270 (2005)

    Article  Google Scholar 

  13. B. Chen, A. Chrambach, Estimation of polymerization efficiency in the formation of polyacrylamide gel, using continuous optical scanning during polymerization, J. Biochem. Biophys. Methods 2, 105–116 (1979)

    Article  Google Scholar 

  14. A. Pourjavadi, H. Ghasemzadeh, R. Soleyman, Synthesis, characterization, and swelling behavior of alginate-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. J. Appl. Polym. Sci. 105, 2631–2639 (2007)

    Article  CAS  Google Scholar 

  15. A. Pourjavadi, M. Ayyari, Taguchi optimized synthesis of collagen-g-poly (acrylic acid)/ kaolin composite superabsorbent hydrogel. Eur. Polym. J. 44, 1209–1216 (2008)

    Article  CAS  Google Scholar 

  16. W. Wang, J. Wang, Y. Kang, A. Wang, Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Compos. Part B 42, 809–818 (2011)

    Article  Google Scholar 

  17. F. Sabbagh, I.I. Muhamad, Acrylamide-based hydrogel drug delivery systems: release of Acyclovir from MgO nanocompositehydrogel. J. Taiwan Inst. Chem. Eng. 72, 182–193 (2017)

    Article  CAS  Google Scholar 

  18. H. Hezaveh, I.I. Muhamad, Impact of metal oxide nanoparticles on oral release properties of pH-sensitive hydrogel nanocomposites. Int. J. Biol. Macromol. 50, 1334–1340 (2012)

    Article  CAS  Google Scholar 

  19. M.A. Janney, O.O. Omatete, C.A. Walls, S.D. Nunn, R.J. Ogle, Development of low-toxicity gelcasting systems. J. Am. Ceram. Soc. 91, 581–591 (1998)

    Google Scholar 

  20. K.T. Barnhart, E.S. Pretorius, K. Timbers, D. Shera, M. Shabbout, D. Malamud, Distribution of a 3.5-mL (1.0%) C31G vaginal gel using magnetic resonance imaging. Contraception 71, 357–361 (2005)

    Article  CAS  Google Scholar 

  21. Y.A. Han, M. Singh, B.B. Saxena, Development of vaginal rings for sustained release of nonhormonal contraceptives and anti-HIV agents. Contraception 76, 132–138 (2007)

    Article  CAS  Google Scholar 

  22. P.H.M. Van De Ronald Barentsen, J.H.N. Weijer, Schram, gynecolg continuous low dose estradiol released from a vaginal ring versus estriol vaginal cream for urogenital atrophy. Eur. J. Obstet. Gynecol. 71, 73–80 (1997)

    Article  Google Scholar 

  23. A. Hentrich, Herstellung von polymeren Stents als Drug Delivery Systeme durch Tauchen aus der Polymerlösung. Univerlagtuberlin (2005)

  24. R. Dash, M. Foston, A.J. Ragauskas, Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr. Polym. 91, 638–645 (2013)

    Article  CAS  Google Scholar 

  25. H.S. Samanta, S.K. Ray, Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr. Polym. 99, 666–678 (2014)

    Article  CAS  Google Scholar 

  26. N. Şahiner, S. Malci, Ö. Çelikbiçak, Ö. Kantǒlu, B. Salih, Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea. Radiat. Phys. Chem. 74, 76–85 (2005)

    Article  Google Scholar 

  27. M.S. Rahman, G. Al-Saidi, N. Guizani, A. Abdullah, Development of state diagram of bovine gelatin by measuring thermal characteristics using differential scanning calorimetry (DSC) and cooling curve method. Thermochim. Acta 509(1), 111–119 (2010)

    Article  CAS  Google Scholar 

  28. M.M. Ozmen, M.V. Dinu, O. Okay, Preparation of macroporous poly (acrylamide) hydrogels in DMSO/water mixture at subzero temperatures. Polym. Bull. 60(2), 169–180 (2008)

    Article  CAS  Google Scholar 

  29. M.H. Kabir, T. Hazama, Y. Watanabe, J. Gong, K. Murase, T. Sunada, H. Furukawa, Smart hydrogel with shape memory for biomedical applications. J. Taiwan Inst. Chem. Eng. 45(6), 3134–3138 (2014)

    Article  Google Scholar 

  30. F. Sabbagh, I.I. Muhamad, Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sust. Energy Rev. 72, 95–104 (2017)

    Article  CAS  Google Scholar 

  31. Y. Lu, P. Spyra, Y. Mei, M. Ballauff, A. Pich, Composite hydrogels: robust carriers for catalytic nanoparticles. Macromol. Chem. Phys. 208(3), 254–261 (2007)

    Article  CAS  Google Scholar 

  32. R. Liang, H. Yuan, G. Xi, Q. Zhou, Synthesis of wheat straw-g-poly (acrylic acid) superabsorbent composites and release of urea from it. Carbohydr. Polym. 77, 181–187 (2009)

    Article  CAS  Google Scholar 

  33. E.S. Shapiro, Academic Skills Problems: Direct Assessment and Intervention (Guilford Press, New York, 2011)

    Google Scholar 

  34. F. Zeng, Z. Tong, H. Feng, NMR investigation of phase separation in poly (N-isopropyl acrylamide)/water solutions. Polymer 38(22), 5539–5544 (1997)

    Article  CAS  Google Scholar 

  35. E.S. Dragan, M.M. Perju, M.V. Dinu, Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr. Polym. 88, 270–281 (2012)

    Article  CAS  Google Scholar 

  36. Q. Guan, H. Zheng, J. Zhai, C. Zhao, X. Zheng, X. Tang, W. Chen, Y. Sun, Effect of template on structure and properties of cationic polyacrylamide: characterization and mechanism. Ind. Eng. Chem. Res. 53, 5624–5635 (2014)

    Article  CAS  Google Scholar 

  37. H. Zheng, J. Ma, C. Zhu, Z. Zhang, L. Liu, Y. Sun, X. Tang, Synthesis of anion polyacrylamide under UV initiation and its application in removing dioctyl phthalate from water through flocculation process. Sep. Purif. Technol. 123, 35–44 (2014)

    Article  CAS  Google Scholar 

  38. H. Zheng, Y. Sun, J. Guo, F. Li, W. Fan, Y. Liao, Q. Guan, Characterization and evaluation of dewatering properties of PADB, a highly efficient cationic flocculant. Ind. Eng. Chem. Res. 53, 2572–2582 (2014)

    Article  CAS  Google Scholar 

  39. Z. Yang, H. Yang, Z. Jiang, T. Cai, H. Li, H. Li, A. Li, R. Cheng, Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. J. Hazard. Mater. 254–255, 36–45 (2013)

    Article  Google Scholar 

  40. A. Thakur, R.K. Wanchoo, P. Singh, Hydrogels of poly(acrylamide-co-acrylic acid): in-vitro study on release of gentamicin sulfate. Chem. Biochem. Eng. Q. 25, 471–482 (2012)

    Google Scholar 

  41. C. Zhou, Y. Wu, G. Chen, J. Feng, X. Liu, C. Wang, S. Zhang, J. Wang, S. Zhou, S. Ren, Articles Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011)

    Article  CAS  Google Scholar 

  42. H. Jeličić, E. Phelps, R.M. Lerner, Use of missing data methods in longitudinal studies: the persistence of bad practices in developmental psychology. Dev. Psychol. 45, 1195 (2009)

    Article  Google Scholar 

  43. B. Singh, V. Sharma, Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr. Polym. 101, 928–940 (2014)

    Article  CAS  Google Scholar 

  44. J. Li, J. Lu, Y. Li, Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. J. Appl. Polym. Sci. 112(1), 261–268 (2009)

    Article  CAS  Google Scholar 

  45. E. Gmelin, S.M. Sarge, Calibration of differential scanning calorimeters. Pure Appl. Chem. 67(11), 1789–1800 (1995)

    Article  CAS  Google Scholar 

  46. R. Krishna, J.B.S. Ng, S. Pillai, L. Bergström, N. Hedin, Journal of Colloid and Interface Science Temperature-induced formation of strong gels of acrylamide-based polyelectrolytes. J. Colloid Interface Sci. 337, 46–53 (2009)

    Article  Google Scholar 

  47. H. Hezaveh, I.I. Muhamad, I. Noshadi, L. Shu Fen, N. Ngadi, Swelling behaviour and controlled drug release from cross-linked carrageenan/NaCMC hydrogel by diffusion mechanism. J. Microencapsulation. 29(4), 368–379 (2012)

    Article  CAS  Google Scholar 

  48. H. Hezaveh, I.I. Muhamad, Effect of natural cross-linker on swelling and structural stability of kappa-carrageenan/hydroxyethyl cellulose pH-sensitive hydrogels. Korean J. Chem. Eng. 29(11), 1647–1655 (2012)

    Article  CAS  Google Scholar 

  49. H. Hezaveh, I.I. Muhamad, Effect of MgO nanofillers on burst release reduction from hydrogel nanocomposites. J. Mater. Sci. 24(6), 1443–1453 (2013)

    CAS  Google Scholar 

  50. M. Reza Saboktakin, R.M. Tabatabaei, Supramolecular hydrogels as drug delivery systems. Int. J. Biol. Macromol. 75, 426–436 (2015)

    Article  Google Scholar 

  51. Y. Shi, J. Wang, H. Wang, Y. Hu, X. Chen, Z. Yang, Glutathione-triggered formation of a Fmoc-protected short peptide-based supramolecular hydrogel. PLoS ONE 9(9), e106968 (2014)

    Article  Google Scholar 

  52. I.I. Muhamad, F. Sabbagh, N.A. Karim, Polyhydroxyalkanoates: a valuable secondary metabolite produced in microorganisms and plants. In: Plant Secondary Metabolites, Volume Three: Their Roles in Stress Eco-Physiology (2017), p. 185

  53. N.M. Khatir, Z. Abdul-Malek, A.K. Zak, A. Akbari, F. Sabbagh, Sol–gel grown Fe-doped ZnO nanoparticles: antibacterial and structural behaviors. J. Sol-Gel. Sci. Technol. 78(1), 91–98 (2016)

    Article  Google Scholar 

  54. G.I. Dzhardimalieva, S.A. Semenov, E.I. Knerelman, G.I. Davydova, K.A. Kydralieva, Preparation and reactivity of metal-containing monomers. 78. Scandium-containing monomers and polymers: synthesis, structure and properties. J. Inorg. Organomet. Polym. Mater. 26(6), 1441–1451 (2016)

    Article  CAS  Google Scholar 

  55. A.A. Adewunmi, S. Ismail, A.S. Sultan, Carbon nanotubes (CNTs) nanocomposite hydrogels developed for various applications: a critical review. J. Inorg. Organomet. Polym. Mater. 26(4), 717–737 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Idayu Muhamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabbagh, F., Muhamad, I.I. Physical and Chemical Characterisation of Acrylamide-Based Hydrogels, Aam, Aam/NaCMC and Aam/NaCMC/MgO. J Inorg Organomet Polym 27, 1439–1449 (2017). https://doi.org/10.1007/s10904-017-0599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0599-4

Keywords

Navigation