Skip to main content
Log in

Crystallographic, Structural and Band Gap Tailoring of Zn0.98Mn0.02S Quantum Dots Co-Doped with Cu by Co-Precipitation Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zn0.98−xCuxMn0.02S (x = 0, 0.02, 0.04) quantum dots with different Cu concentrations have been successfully synthesized by co-precipitation method. Cubic phase exhibited in Zn0.98Mn0.02S turned to mixture of both cubic and hexagonal phases by Cu-doping which was confirmed by X-ray diffraction pattern. The shift of peak position along (111) plane and the diminishing of interplanar distance and lattice constant confirmed the proper substitution of Cu and Mn in ZnS. Cubic phase of ZnS was tuned towards hexagonal phase by Cu-doping i.e., morphology diminishes stability which was confirmed by microscopic images. Optical studies revealed the wide tuning of band gap between 3.3 and 3.93 eV by Mn-doping and Cu co-doping which is useful for opto-electronic device applications. Photoluminescence spectra illustrated two distinct emission bands, UV emission around 392–396 nm and defect related blue emission around 470–481 nm. The change in intensity and peak position of UV and blue emission was discussed based on crystallite size formation of defect states by Cu-doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.J. Murphy, Anal. Chem. 74, 520A–526A (2002)

    Article  CAS  Google Scholar 

  2. P.C. Kuo, H.W. Wang, S.Y. Chen, J. Ceram. Soc. Jpn. 114, 918–922 (2006)

    Article  CAS  Google Scholar 

  3. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008)

    Article  CAS  Google Scholar 

  4. W.S. Zou, D. Sheng, X. Ge, J.-Q. Qiao, H.-Z. Lian, Anal. Chem. 83, 30–37 (2011)

    Article  CAS  Google Scholar 

  5. B.B. Srivastava, S. Jana, N. Pradhan, J. Am. Chem. Soc. 133, 1007–1015 (2011)

    Article  CAS  Google Scholar 

  6. R.N. Bhargava, J. Lumin. 70, 85–94 (1996)

    Article  CAS  Google Scholar 

  7. P.K. Sharma, R. Nass, H. Schmidt, Opt. Mater. 10, 161–169 (1998)

    Article  CAS  Google Scholar 

  8. U. Sohling, G. Jung, D. Saenger, S. Lu, B. Kutsch, M. Mennig, J. Sol-Gel. Sci. Technol. 13, 685–689 (1998)

    Article  CAS  Google Scholar 

  9. J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen, Appl. Phys. Lett. 70, 2335–2337 (1997)

    Article  CAS  Google Scholar 

  10. B. Vaidhyanathan, C.P. Kumar, J.L. Rao, K.J. Rao, J. Phys. Chem. Solids 59, 121–128 (1998)

    Article  CAS  Google Scholar 

  11. R.P.S. Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, J. Chem. Phys. 121, 10250–10259 (2004)

    Article  CAS  Google Scholar 

  12. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmiko, Phys. Rev. Lett. 72, 416–419 (1994)

    Article  CAS  Google Scholar 

  13. P. Sakthivel, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci. 26, 1533–1542 (2015)

    CAS  Google Scholar 

  14. P. Yang, M. Lu, G. Zhou, D. Yuan, D. Xu, Inorg. Chem. Commun. 4, 734–737 (2001)

    Article  CAS  Google Scholar 

  15. N. Uzar, S. Okur, M.C. Arikan, Sens. Actuators, A 167, 188–193 (2011)

    Article  Google Scholar 

  16. M. Geszke, M. Murias, L. Balan, G. Medjahdi, J. Korczynski, M. Moritz, J. Lulek, R. Schneider, Acta Biomater. 7, 1327–1338 (2011)

    Article  CAS  Google Scholar 

  17. J.C. Lee, N.G. Subramaniam, J.W. Lee, T.W. Kang, Appl. Phys. Lett. 90, 262909 (2007)

    Article  Google Scholar 

  18. F.J. Owens, L. Gladczuk, R. Szymczak, P. Dluzewski, A. Wisniewski, H. Szymczak, A. Golnik, Ch. Bernhard, Ch. Niedermayer, J. Phys. Chem. Solids 72, 648–652 (2011)

    Article  CAS  Google Scholar 

  19. S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna, Phys. Rev. B 60, 9191 (1999)

    Article  CAS  Google Scholar 

  20. Z. Wang, L.L. Daemen, Y. Zhao, C.S. Zha, R.T. Downs, X. Wang, Z.L. Wang, R.J. Hemeley, Nat. Mater. 4, 922–927 (2005)

    Article  CAS  Google Scholar 

  21. D.A. Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Appl. Surf. Sci. 258, 5206–5211 (2012)

    Article  CAS  Google Scholar 

  22. S. Anandan, S. Muthukumaran, Microstructural. J. Mater. Sci. 26, 4298–4307 (2015)

    CAS  Google Scholar 

  23. P. Yang, M. Lu, D. Xu, D. Yuan, C. Song, J. Phys. Chem. Solids 64, 155–158 (2003)

    Article  CAS  Google Scholar 

  24. A. Datta, S.K. Panda, S. Chaudhuri, J. Solid State Chem. 181, 2332–2337 (2008)

    Article  CAS  Google Scholar 

  25. M. Ashokkumar, S. Muthukumaran, J. Mater. Sci. 26, 1225–1233 (2015)

    CAS  Google Scholar 

  26. C.M. Huang, L.C. Chen, G.T. Pan, T.C.K. Yang, W.S. Cheng, K.W. Cheng, Mater. Chem. Phys. 117, 156–162 (2009)

    Article  CAS  Google Scholar 

  27. P. Yang, M. Lü, D. Xü, D. Yuan, G. Zhou, Appl. Phys. A 73, 455–458 (2001)

    Article  Google Scholar 

  28. Y.Q. Li, J.A. Zapien, Y.Y. Shan, S.T. Lee, Appl. Phys. Lett. 88, 013115–013117 (2006)

    Article  Google Scholar 

  29. W.B. Sang, Y.B. Qian, J. Min, D. Li, L. Wang, W. Shi, L. Yinfeng, Solid State Commun. 121, 475–478 (2002)

    Article  CAS  Google Scholar 

  30. P. Yang, M.K. Lu, C.F. Song, D. Xu, D. Yuan, X.F. Cheng, G.J. Zhou, Opt. Mater. 20, 141–145 (2002)

    Article  CAS  Google Scholar 

  31. S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Solid State Sci. 14, 299–304 (2012)

    Article  CAS  Google Scholar 

  32. N.R. Pavaskar, C.A. Menezes, A.B.P. Sinha, J. Electrochem. Soc. 124, 743–748 (1977)

    Article  CAS  Google Scholar 

  33. B. Malinowska, M. Rakib, G. Durand, Solar Energy Mater. Solar Cells 86, 399–419 (2005)

    Article  CAS  Google Scholar 

  34. B.S. Rema Devi, R. Raveendran, A.V. Vaidyan, Pramana, J. Phys. 68, 679–687 (2007)

    Google Scholar 

  35. Y. Tong, Z. Jiang, C. Wang, Z.Y. Xin, S. Hong, Liu, Mater. Lett. 62, 3385–3387 (2008)

    Article  CAS  Google Scholar 

  36. W. Hoheisel, V.L. Colvin, C.S. Johnson, A.P. Alivisatos, J. Chem. Phys. 101, 8455–8460 (1994)

    Article  CAS  Google Scholar 

  37. D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys. 84, 2841–2845 (1998)

    Article  CAS  Google Scholar 

  38. A.A. Khosravi, M. Kundu, L. Jatwa, S.K. Deshpande, U.A. Bhagwat, M. Sastry, K. Kulkarni, Appl. Phys. Lett. 67, 2702 (1995)

    Article  CAS  Google Scholar 

  39. A. Datta, S. Biswas, S. Kar, S. Chaudhuri, J. Nanosci. Nanotechnol. 10, 3670–3676 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, P., Muthukumaran, S. Crystallographic, Structural and Band Gap Tailoring of Zn0.98Mn0.02S Quantum Dots Co-Doped with Cu by Co-Precipitation Method. J Inorg Organomet Polym 26, 563–571 (2016). https://doi.org/10.1007/s10904-016-0341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0341-7

Keywords

Navigation