Skip to main content
Log in

Investigation of Ni influence on structural and band gap tuning of Zn0.98Mn0.02S quantum dots by co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn0.98−xNixMn0.02S (x = 0, 0.02, 0.04) quantum dots have been synthesized by using simple co-precipitation method. The synthesized samples were characterized using various analytical tools to monitor optimum properties. X-ray diffraction analysis revealed that the materials had cubic crystal structure as well as phase purity. The average crystallite size was determined within the range of 1.3 to 1.8 nm using Debye Scherer equation. The microscopic studies showed the smooth surface passivation and agglomeration of particles. Energy Dispersive X-ray analysis ensured the existence of compositional elements, Zn, Ni, Mn and S in the synthesized samples within the stoichiometry ratio. UV–Visible absorption and transmittance studies and band gap estimation were taken from optical studies. The optical studies showed the red shift in absorption and elevation of intensity by increasing Ni concentration. The band gap of the samples was found to be in the range of 3.56–3.93 eV (red shift) because of the exchange interactions between Zn (3d10) and localized d electrons of Mn (3d5) and Ni (3d8). From the observation of linear red shift of band gap, substantial absorption and low transmittance by Ni incorporation, this material can be chosen as a suitable applicant for the optoelectronic device applications and as a buffer material for the solar cell applications. FTIR spectrum report confirmed the presence of the dopant into the ZnS host lattice and chemical bonding corresponding to each elements in the prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.P. Alivisatos, Science 271, 933 (1996)

    Article  Google Scholar 

  2. A.M. Smith, S. Nie, Analyst 129, 672 (2004)

    Article  Google Scholar 

  3. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)

    Article  Google Scholar 

  4. B. Shen, H. Zhou, Z. Chen, Z. Wang, Y. Sheng, J. Chen, B. Geng, J. Nanosci. Nanotech. 12, 3931 (2012)

    Article  Google Scholar 

  5. I. Gerdova, A. Hache, Optics Commun. 246, 205 (2005)

    Article  Google Scholar 

  6. F. Deng, X. Mei, J. Mater. Sci. Mater. Electron 26, 7635 (2015)

    Article  Google Scholar 

  7. J. Wang, Y. Li, Q. Shen, T. Izuishi, Z. Pan, K. Zhao, X. Zhong, J. Mater. Chem. A 4, 877 (2016)

    Article  Google Scholar 

  8. S. Ummartyotin, Y. Infahsaeng, Renew. Sustainable Energy Rev. 55, 17–24 (2016)

    Article  Google Scholar 

  9. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994)

    Article  Google Scholar 

  10. P. Sakthivel, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci. Mater. Electron 26, 1533 (2015)

    Article  Google Scholar 

  11. H.V. Bui, H.N. Nguyen, IEEE Trans. Magn. 50, 1 (2014)

    Google Scholar 

  12. V. Ramasamy, K. Pabha, G. Murugadoss, Superlattices Microstruct. 51, 699 (2012)

    Article  Google Scholar 

  13. R. Sanjeevkumar, V. Veeravazhuthi, N. Muthukumarasamy, M. Thambidurai, D. Vishnushankar, Superlattices Microstruct. 86, 552 (2015)

    Article  Google Scholar 

  14. S. Darafarin, R. Sahraei, A. Daneshfar, J. Alloys Compd. 658, 780 (2016)

    Article  Google Scholar 

  15. M. Molaei, F. Karimimaskon, A. Lotfiani, M. Samadpour, H. Liu, J. Lumin. 143, 649 (2013)

    Article  Google Scholar 

  16. HQ Xie, LJ Tang, JL Tang, P Peng, J. Magn. Magn. Mater. 377, 239 (2015)

    Article  Google Scholar 

  17. G. Murugadoss, J. Lumin. 132, 2043 (2012)

    Article  Google Scholar 

  18. B. Poornapraksah, S. Sambasivam, D.A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Ceram. Int. 40, 2677 (2014)

    Article  Google Scholar 

  19. H. Chen, D. Shi, J. Qi, J. Appl. Phys. 109, 084338 (2011)

    Article  Google Scholar 

  20. J.K. Saleem, T.M. Hameed, S. Kuhn, I. Nahal, M.A. Draaz, N.K. HeJazy, R. Hempelmann, J. Mater. Sci. Mater. Electron 25, 5188 (2014)

    Article  Google Scholar 

  21. P. Sakthivel, S. Muthukumaran J. Inorg. Organomet. Polym. 26, 563 (2016)

    Article  Google Scholar 

  22. V. Ramasamy, K. Prabha, G. Murugadoss, Spectrochem. Acta Part A 96, 963 (2012)

    Article  Google Scholar 

  23. P. Yang, M. Lu, D. Xu, D. Yuan, C. Song, S. Liu, X. Cheng, Opt. Mater. 24, 497 (2003)

    Article  Google Scholar 

  24. J. Kaur, M. Sharma, O.P. Pandey, Opt. Mater. 47, 7 (2015)

    Article  Google Scholar 

  25. N.R. Pavaskar, C.A. Menezes, A.B.P. Sinha, J. Elctrochem. Soc. 124, 743 (1977)

    Article  Google Scholar 

  26. B.S. Ramadevi, R. Raveendran, A.V. Vaidyan, Pramana J. Phys. 68, 679 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, P., Muthukumaran, S. Investigation of Ni influence on structural and band gap tuning of Zn0.98Mn0.02S quantum dots by co-precipitation method. J Mater Sci: Mater Electron 28, 8309–8315 (2017). https://doi.org/10.1007/s10854-017-6545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6545-y

Keywords

Navigation