Skip to main content

Advertisement

Log in

Co-doped ZnSe: Mn, Cu quantum dots (QDs)—Eco-friendly synthesis, optical and structural properties besides lattice strain/dislocation density

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cu-Mn co-doped ZnSe quantum dots were eco-friendly synthesized at different synthesis conditions using water-based microwave-activated (MWIR) method. Energy band gaps \(E_{\text{gap}}^{\text{DASF}}\) were determined using high-precision derivation of absorption spectrum fitting (DASF) method; the obtained results show that \(E_{\text{gap}}^{\text{DASF}}\) values are within the range of 3.49–3.77 eV. Depending on the synthesis conditions, a decreasing trend of energy gap was observed with the increasing of MWIR time and ambient temperature. Morphologies and structural characterizations were done by XRD, EDX, FESEM, map and TEM, which revealed formation of ZnSe nanoparticles with mean crystallite size of ~ 2–5 nm. Also, Urbach energies were estimated, which their very small values in compare with \(E_{{{\text{gap}}}}\) imply to the sharp band edges and so their good crystallinity nature. Moreover, refractive index, dielectric constant and nonlinear optical susceptibility of each sample were determined; results imply that these nanoparticles have a high potential in optoelectronic applications. Also, structural characteristics such as dislocation density, lattice strain and size of NCs were evaluated upon the Scherrer, Williamson–Hall and Williamson–Smallman methods. The results of structural features obtained from these approaches are highly inter-correlated and show same trends with the variation of synthesis conditions. Results show that the size of QDs is varied tunable by changing the MWIR time, ambient temperature and Mn dopant percentage and the as-synthesized ZnSe QDs and doped QDs have similar cubic zinc blend structure. Also, TEM result reveals that ZnSe nanoparticles are spherical in shape with an average grain size of about 5 nm. Upon the different performed opto-structural criteria, sample with Mn = 4% has the best crystallinity as good candidate in optical and mechanical applications. There were anomalies in different properties at Mn = 1.5 and 2% attributed to their higher density of lattice imperfections and surface trap centers related to how Mn ions incorporated to the ZnSe host lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The data used have been extensively presented in tables.

References

  1. S.M. Prokes, K.L. Wang, Mater. Res. Sci. Bull. 24, 13 (1999)

    Google Scholar 

  2. J. Hu, TW ODOM and CM LIEBER. Acc. Chem. Res 32, 435 (1999)

    Article  Google Scholar 

  3. K. Yadav, Y. Dwivedi, N. Jaggi, Structural and optical properties of Ni doped ZnSe nanoparticles. J. Lumin. 158, 181–187 (2015)

    Article  Google Scholar 

  4. B. Feng, J. Cao, J. Yang, S. Yang, D. Han, Characterization and photocatalytic activity of ZnSe nanoparticles synthesized by a facile solvothermal method, and the effects of different solvents on these properties. Mater. Res. Bull. 60, 794–801 (2014)

    Article  Google Scholar 

  5. D. Souri, A.R. Khezripour, M. Molaei, M. Karimipour, ZnSe and copper-doped ZnSe nanocrystals (NCs): optical absorbance and precise determination of energy band gap beside their exact optical transition type and Urbach energy. Curr. Appl. Phys. 17(1), 41–46 (2017)

    Article  ADS  Google Scholar 

  6. D. Souri, M. Sarfehjou, A.R. Khezripour, The effect of ambient temperature on the optical properties and crystalline quality of ZnSe and ZnSe: Cu NCs grown by rapid microwave irradiation. J. Mater. Sci.: Mater. Electron. 29(4), 3411–3422 (2018)

    Google Scholar 

  7. D. Souri, K. Ahmadian, A.R. Khezripour, Optical properties of ZnSe nanocrystals (NCs) prepared by microwave irradiation method at different pH and different irradiation times. J. Electron. Mater. 47(11), 6759–6766 (2018)

    Article  ADS  Google Scholar 

  8. A.R. Khezripour, D. Souri, PH-, microwave irradiation time-, and dopant content-sensitive photoluminescence of pure and Cu-doped ZnSe quantum dots fabricated by rapid microwave activated method. Optik 183, 294–301 (2019)

    Article  ADS  Google Scholar 

  9. A.D. Lad, C. Rajesh, M. Khan, N. Ali, I.K. Gopalakrishnan, S.K. Kulshreshtha, S. Mahamuni, Magnetic behavior of manganese-doped ZnSe quantum dots. J. Appl. Phys. 101, 103906 (2007)

    Article  ADS  Google Scholar 

  10. V.V. Nikesh, A.D. Lad, S. Kimura, S. Nozaki, S. Mahamuni, Electron energy levels in ZnSe quantum dots. J. Appl. Phys. 100(11), 113520 (2006)

    Article  ADS  Google Scholar 

  11. N. Oraee, M. Molaei, E.S. Iranizad, Investigation of the photoluminescence properties of ZnSe and ZnSe: Cu nanaocrystals (NCs). Mod. Phys. Lett. B 26(26), 1250171 (2012)

    Article  ADS  Google Scholar 

  12. N. Pradhan, D.M. Battaglia, Y. Liu, X. Peng, Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett. 7(2), 312–317 (2007)

    Article  ADS  Google Scholar 

  13. J. Han, H. Zhang, Y. Tang, Y. Liu, X. Yao, B. Yang, Role of redox reaction and electrostatics in transition-metal impurity-promoted photoluminescence evolution of water-soluble ZnSe nanocrystals. J. Phys. Chem. C 113(18), 7503–7510 (2009)

    Article  Google Scholar 

  14. B. Feng, J. Cao, D. Han, H. Liang, S. Yang, X. Li, J. Yang, ZnSe nanoparticles of different sizes: Optical and photocatalytic properties. Mater. Sci. Semicond. Process. 27, 865–872 (2014)

    Article  Google Scholar 

  15. C.-W. Huang, H.-M. Weng, Y.-L. Jiang, H.-Y. Ueng, Optimum growth of ZnSe film by molecular beam deposition. Vacuum 83, 313–318 (2008)

    Article  ADS  Google Scholar 

  16. C. Mehta, G.S.S. Saini, J.M. Abbas, S.K. Tripathi, Effect of deposition parameters on structural, optical and electrical properties of nanocrystalline ZnSe thin films. Appl. Surf. Sci. 256(3), 608–614 (2009)

    Article  ADS  Google Scholar 

  17. Wang, J., Feng, H., Fan, W., Chen, K., Yang, Q. (2013). Wet-chemical synthesis and optical property of ZnSe nanowires by Ag 2 Se-catalyzed growth mechanism. Advances in Materials Physics and Chemistry, 2013.

  18. J.C. Jansen, A. Arafat, Synthesis of microporous materials, New York, 1992, p. 507.

  19. M. Kaur, P. Kaur, G. Kaur, K. Dev, P. Negi, R. Sharma, Structural, morphological and optical properties of Eu–N co-doped zinc oxide nanoparticles synthesized using co-precipitation technique. Vacuum 155, 689–695 (2018)

    Article  ADS  Google Scholar 

  20. M.G. Hajiabadi, M. Zamanian, D. Souri, Williamson–Hall analysis in evaluation of lattice strain and the density of lattice dislocation for nanometer scaled ZnSe and ZnSe: Cu particles. Ceram. Int. 45(11), 14084–14089 (2019)

    Article  Google Scholar 

  21. N. Priyadharsini, M. Elango, S. Vairam, T. Venkatachalam, M. Thamilselvan, Effect of temperature and pH on structural, optical and electrical properties of Ni doped ZnSe nanoparticles. Optik 127(19), 7543–7549 (2016)

    Article  ADS  Google Scholar 

  22. D. Su, L. Wang, M. Li, S. Mei, X. Wei, H. Dai, Z. Hu, F. Xie, R. Guo, Highly luminescent water-soluble AgInS2/ZnS quantum dots-hydrogel composites for warm white LEDs. J. Alloy. Compd. 824, 153896 (2020)

    Article  Google Scholar 

  23. D. Zhou, Y. Wang, P. Tian, P. Jing, M. Sun, X. Chen, X. Xu, D. Li, S. Mei, X. Liu, W. Zhang, R. Guo, S. Qu, H. Zhang, Microwave-assisted heating method toward multicolor quantum dot-based phosphors with much improved luminescence. ACS Appl. Mater. Interfaces. 10(32), 27160–27170 (2018)

    Article  Google Scholar 

  24. S. Mei, J. Zhu, W. Yang, X. Wei, W. Zhang, Q. Chen, L. He, Y. Jiang, R. Guo, Tunable emission and morphology control of the Cu-In-S/ZnS quantum dots with dual stabilizer via microwave-assisted aqueous synthesis. J. Alloy. Compd. 729, 1–8 (2017)

    Article  Google Scholar 

  25. J. Zhang, Q. Chen, W. Zhang, S. Mei, L. He, J. Zhu, G. Chen, R. Guo, Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission. Appl. Surf. Sci. 351, 655–661 (2015)

    Article  Google Scholar 

  26. S. Ebrahimi, D. Souri, Green synthesis and optical properties of ZnSe:Cu@ZnS core/shell nanocrystals fabricated by new photochemical microwave-assisted colloidal method. J. Alloy. Compd. 840, 155712 (2020)

    Article  Google Scholar 

  27. J.C. Jansen, A. Arafat, A.K. Barakat, H. Van Bekkum, Microwave techniques in zeolite synthesis. Synth. Microporous Mater. 1, 507–521 (1992)

    Google Scholar 

  28. S. Komarneni, M.C. D’Arrigo, C. Leonelli, G.C. Pellacani, H. Katsuki, Microwave-hydrothermal synthesis of nanophase ferrites. J. Am. Ceram. Soc. 81(11), 3041–3043 (1998)

    Article  Google Scholar 

  29. S. Komarneni, R.K. Rajha, H. Katsuki, Microwave-hydrothermal processing of titanium dioxide. Mater. Chem. Phys. 61(1), 50–54 (1999)

    Article  Google Scholar 

  30. O. Palchik, R. Kerner, Z. Zhu, A. Gedanken, Preparation of Cu2− xTe and HgTe by Using Microwave Heating. J. Solid State Chem. 154(2), 530–534 (2000)

    Article  ADS  Google Scholar 

  31. J. Zhu, O. Palchik, S. Chen, A. Gedanken, Microwave assisted preparation of CdSe, PbSe, and Cu2-x Se nanoparticles. J. Phys. Chem. B 104(31), 7344–7347 (2000)

    Article  Google Scholar 

  32. R. Kerner, O. Palchik, A. Gedanken, Sonochemical and microwave-assisted preparations of PbTe and PbSeP: A comparative study. Chem. Mater. 13(4), 1413–1419 (2001)

    Article  Google Scholar 

  33. Y. He, H.T. Lu, L.M. Sai, Y.Y. Su, M. Hu, C.H. Fan, L.H. Wang, Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv. Mater. 20(18), 3416–3421 (2008)

    Article  Google Scholar 

  34. S.D. Hart, G.R. Maskaly, B. Temelkuran, P.H. Prideaux, J.D. Joannopoulos, Y. Fink, External reflection from omnidirectional dielectric mirror fibers. Science 296(5567), 510–513 (2002)

    Article  ADS  Google Scholar 

  35. J.S. Luo, J.M. Olson, Y. Zhang, A. Mascarenhas, Near-band-gap reflectance anisotropy in ordered Ga 0.5 In 0.5 P. Phys. Rev. B 55(24), 16385 (1997)

    Article  ADS  Google Scholar 

  36. Kittel, C., McEuen, P., McEuen, P. (1996). Introduction to solid state physics (Vol. 8, pp. 105–130). New York: Wiley.

  37. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  ADS  Google Scholar 

  38. H.P. Klong, L.F. Alexander, X-Ray Diffraction Procedures for Crystalline and Amorphous Materials (Wiley, New York, 1954).

    Google Scholar 

  39. S. Ebrahimi, D. Souri, M. Ghabooli, Third order non-linear optical susceptibility (χ (3)) and evaluation of antibacterial activity of Cu-Doped ZnSe nanocrystals fabricated by hydro-microwave technique. J. Cluster Sci. 30(3), 677–686 (2019)

    Article  Google Scholar 

  40. R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65(1), 1–31 (2000)

    Article  Google Scholar 

  41. E.N. Aqua, The separation of particle size and strain by the method of the variance. Acta Crystallogr. A 20(4), 560–563 (1966)

    Article  Google Scholar 

  42. K. Venkateswarlu, M. Sandhyarani, T.A. Nellaippan, N. Rameshbabu, Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis. Proc. Mater. Sci. 5, 212–221 (2014)

    Article  Google Scholar 

  43. J. Zhang, F. Jiang, Temperature-dependent photoluminescence of Mg-doped CdS nanowires. Phys. Lett. A 373(42), 3888–3891 (2009)

    Article  ADS  Google Scholar 

  44. L. Yang, J. Zhu, D. Xiao, Synthesis and characterization of ZnSe: Fe/ZnSe core/shell nanocrystals. J. Lumin. 148, 129–133 (2014)

    Article  Google Scholar 

  45. N.S. Hush, M.H.L. Pryce, Radii of transition ions in crystal fields. J. Chem. Phys. 26(1), 143–144 (1957)

    Article  ADS  Google Scholar 

  46. T. Ungár, Characterization of nanocrystalline materials by X-ray line profile analysis. J. Mater. Sci. 42(5), 1584–1593 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. Beigpour, H. (2017). Doctor of Philosophy Thesis in Solid State Physics, Properties of Yb3+ Doped Chlorophost Phase Glasses and Glass-Ceramics.

  48. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Boston, 1956).

    Google Scholar 

  49. P. Mcardlenui, An Introduction to X-Ray Diffraction by Single Crystals and Powders (Galway, Irland, 2010).

    Google Scholar 

  50. M. Molaei, A.R. Khezripour, M. Karimipour, Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties. Appl. Surf. Sci. 317, 236–240 (2014)

    Article  ADS  Google Scholar 

  51. M. Molaei, M. Marandi, E. Saievar-Iranizad, N. Taghavinia, B. Liu, H.D. Sun, X.W. Sun, Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. J. Lumin. 132(2), 467–473 (2012)

    Article  Google Scholar 

  52. M. Molaei, E.S. Iranizad, M. Marandi, N. Taghavinia, R. Amrollahi, Synthesis of CdS nanocrystals by a microwave activated method and investigation of the photoluminescence and electroluminescence properties. Appl. Surf. Sci. 257(23), 9796–9801 (2011)

    Article  ADS  Google Scholar 

  53. M. Molaei, A.R. Bahador, M. Karimipour, Green synthesis of ZnSe and core–shell ZnSe@ ZnS nanocrystals (NCs) using a new, rapid and room temperature photochemical approach. J. Lumin. 166, 101–105 (2015)

    Article  Google Scholar 

  54. N.F. Mott, E.A. Davis, Electronic Processes. Non-Crystalline Materials (Clarendon Press, Oxford, 1979).

    Google Scholar 

  55. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972)

    Article  ADS  Google Scholar 

  56. L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E.V. Santiago, Comparison and semiconductor properties of nitrogen doped carbon thin films grown by different techniques. Appl Surf Sci 254(412), 10–1016 (2007)

    Google Scholar 

  57. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119(2), 273–279 (2015)

    Article  ADS  Google Scholar 

  58. Y. Shahmoradi, D. Souri, Growth of silver nanoparticles within the tellurovanadate amorphous matrix: optical band gap and band tailing properties, beside the Williamson–Hall estimation of crystallite size and lattice strain. Ceram. Int. 45(6), 7857–7864 (2019)

    Article  Google Scholar 

  59. M. Elahi, D. Souri, M.S. Yazdanpanah, Pool-Frenkel effect and high frequency dielectric constant determination of semiconducting P2O5-Li2MoO4-Li2O and P2O5-Na2MoO4-Na2O bulk glasses. Cent. Eur. J. Phys. 6(2), 306–310 (2006)

    Google Scholar 

  60. D. Souri, F. Honarvar, Z. Esmaeili Tahan, Characterization of semiconducting mixed electronic-ionic TeO2-V2O5-Ag2O glasses by employing ultrasonic measurements and Vicker’s microhardness. J. Alloy. Compd. 699, 601–610 (2017)

    Article  Google Scholar 

  61. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    Article  ADS  Google Scholar 

  62. A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J. Alloy. Compd. 648, 280–290 (2015)

    Article  Google Scholar 

  63. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. Journal of Applied Physics 79(3), 1736–1740 (1996)

    Article  ADS  Google Scholar 

  64. A.K. Singh, V. Viswanath, V.C. Janu, Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J. Lumin. 129(8), 874–878 (2009)

    Article  Google Scholar 

  65. S. Adachi, T. Taguchi, Optical properties of ZnSe. Phys. Rev. B 43(12), 9569 (1991)

    Article  ADS  Google Scholar 

  66. D.T.F. Marple, Electron effective mass in ZnSe. J. Appl. Phys. 35(6), 1879–1882 (1964)

    Article  ADS  Google Scholar 

  67. R.W. Boyd, Nonlinear Optics (Academic Press, Cambridge, 2003).

    Google Scholar 

  68. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater 4(2), 381–386 (2002)

    Google Scholar 

  69. Milonni, P. W., Eberly, J. H. (2010). Laser resonators and Gaussian beams. Laser Physics, 1st ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA.

  70. C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2(6), 2045 (1970)

    Article  ADS  Google Scholar 

  71. Peyghambarian, N., Koch, S. W., Mysyrowicz, A. (1993). Introduction to semiconductor optics.

Download references

Acknowledgement

The authors are thankful to Dr. Alireza Khezripour for his kindly supports in synthesis process of materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarfehjou, M., Souri, D. Co-doped ZnSe: Mn, Cu quantum dots (QDs)—Eco-friendly synthesis, optical and structural properties besides lattice strain/dislocation density. Appl. Phys. A 127, 139 (2021). https://doi.org/10.1007/s00339-021-04285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04285-3

Keywords

Navigation