Skip to main content
Log in

ZnxCu(1−x)Fe2O4 Nanoferrites by Sol–Gel Auto Combustion Route: Cation Distribution and Microwave Absorption Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The effect of Zn doping on magnetic properties and site preference of cations of CuFe2O4 has been investigated. Zn substituted Cu ferrite nanoparticles with general formula ZnxCu(1x)Fe2O4 were synthesized by a sol–gel auto combustion method. Samples showed fine particle size with very strong aggregation, due to the high temperatures attained during the combustion process. All samples showed high phase purity assessed from X-ray diffraction analysis and do not have magnetization hysteresis, which reveals superparamagnetic character of the fabricated particles. It was found that a certain amount of Zn substitution in Cu ferrite (0.4 < x < 0.6) causes different site occupation of cations. XRD and magnetic hysteresis data of all samples were analyzed and the cation distribution in spinel ferrites was calculated by these two experimental techniques. It was found that the Neel antiferromagnetic aligned sublattice model is valid below this region (x < 0.4), and above it (x > 0.6) the canted spins at octahedral site are dominant according to the tetrahedral site spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. El Moussaoui, R. Masrour, O. Mounkachi, M. Hamedoun, J. Supercond. Nov. Magn. 25, 2473 (2012)

    Article  Google Scholar 

  2. P.P. Hankare, M.R. Kadam, R.P. Patil, K.M. Garadkar, R. Sasikala, A.K. Tripathi, J. Alloy Compd. 501, 37 (2010)

    Article  CAS  Google Scholar 

  3. M. Ajmal, A. Maqsood, J. Alloy Compd. 460, 54 (2008)

    Article  CAS  Google Scholar 

  4. Y. Liu, S. Wei, B. Xu, Y. Wang, H. Tian, H. Tong, J. Magn. Magn. Mater. 349, 57 (2014)

    Article  CAS  Google Scholar 

  5. A.R. Bueno, M.L. Gregori, M.C.S. Nóbrega, J. Magn. Magn. Mater. 320, 864 (2008)

    Article  CAS  Google Scholar 

  6. Y.I. Kim, D. Kim, C.S. Lee, Physica B 337, 42 (2003)

    Article  CAS  Google Scholar 

  7. X.-H. Huang, Z.-H. Chen, Scripta Mater. 54, 169 (2006)

    Article  CAS  Google Scholar 

  8. K. Nejati, R. Zabihi, Chem. Cent. J. 6, 1 (2012)

    Article  Google Scholar 

  9. E. Ranjith Kumar, R. Jayaprakash, T. Prakash, J. Magn. Magn. Mater. 123, 358–359 (2014)

    Google Scholar 

  10. J. Yun-Ho, S. Seung-Deok, S. Hyun-Woo, P. Kyung-Soo, K. Dong-Wan, Nanotechnology 23, 125402 (2012)

    Article  Google Scholar 

  11. D. Ortega, M.V. Kuznetsov, Y.G. Morozov, O.V. Belousova, I.P. Parkin, Phys. Chem. Chem. Phys. 15, 20830 (2013)

    Article  CAS  Google Scholar 

  12. D.S. Mathew, R.-S. Juang, Chem. Eng. J. 129, 51 (2007)

    Article  CAS  Google Scholar 

  13. D.S. Bae, IOP Conf. Ser. Mater. Sci. Eng. 47, 012028 (2013)

    Article  Google Scholar 

  14. A. Franco Júnior, E. Celma de Oliveira Lima, M.A. Novak, P.R. Wells Jr, J. Magn. Magn. Mater. 308, 198 (2007)

    Article  Google Scholar 

  15. J.S. Jang, P.H. Borse, J.S. Lee, O.-S. Jung, C.-R. Cho, E.D. Jeong, M.G. Ha, M.S. Won, B. Kor, Chem. Soc. 30, 1738 (2009)

    CAS  Google Scholar 

  16. Y.-P. Fu, K.-Y. Pan, C.-H. Lin, Mater. Lett. 57, 291 (2002)

    Article  CAS  Google Scholar 

  17. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, J. Phys. Chem. C 111(12274), 8 (2007)

    Google Scholar 

  18. X. Zuo, A. Yang, C. Vittoria, V.G. Harris, J. Appl. Phys. 99, 8 (2006)

    Article  Google Scholar 

  19. A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Superlatt. Microstruct. 64, 118 (2013)

    Article  CAS  Google Scholar 

  20. N. Najmoddin, A. Beitollahi, E. Devlin, H. Kavas, S.M. Mohseni, J. Åkerman, D. Niarchos, H. Rezaie, M. Muhammed, M.S. Toprak, Microporous Mesoporous Mater. 190, 346 (2014)

    Article  CAS  Google Scholar 

  21. I.D. Samadashvili, V.S. Varazashvili, T.E. Machaladze, T.A. Pavlenishvili, Inorg. Mater. 38, 1186 (2002)

    Article  CAS  Google Scholar 

  22. M. Ajmal, A. Maqsood, J. Alloy Compd. 460, 54 (2008)

    Article  CAS  Google Scholar 

  23. K. Maria, S. Choudhury, M. Hakim, Int. Nano. Lett. 3, 1 (2013)

    Article  Google Scholar 

  24. J. Darul, W. Nowicki, Radiat. Phys. Chem. 78, S109 (2009)

    Article  CAS  Google Scholar 

  25. N. Najmoddin, A. Beitollahi, H. Kavas, S. Majid Mohseni, H. Rezaie, J. Åkerman, M.S. Toprak, Cer. Int. 40, 3619 (2014)

    Article  CAS  Google Scholar 

  26. A. Manikandan, J. Judith Vijaya, L. John Kennedy, M. Bououdina, J. Mol. Struct. 1035, 332 (2013)

    Article  CAS  Google Scholar 

  27. R.A. Jasso-Terán, D.A. Cortés-Hernández, E.M. Múzquiz-Ramos, H.J. Sánchez-Fuentes, J. Mater. Sci. Mater. Med. 1 (2014). doi:10.1007/s10856-014-5180-x

  28. M.U. Rana, M.-U. Islam, T. Abbas, Mater. Chem. Phys. 65, 345 (2000)

    Article  CAS  Google Scholar 

  29. Q.J. Han, D.H. Ji, G.D. Tang, Z.Z. Li, X. Hou, W.H. Qi, R.R. Bian, S.R. Liu, Phys. Status Solidi (A) 209, 766 (2012)

    Article  CAS  Google Scholar 

  30. X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Appl. Phys. Lett. 92, 173117 (2008)

    Article  Google Scholar 

  31. O. Akman, H. Kavas, A. Baykal, M.S. Toprak, A. Çoruh, B. Aktaş, J. Magn. Magn. Mater. 327, 151 (2013)

    Article  CAS  Google Scholar 

  32. T. Wejrzanowski, R. Pielaszek, A. Opalińska, H. Matysiak, W. Łojkowski, K.J. Kurzydłowski, Appl. Surf. Sci. 253, 204 (2006)

    Article  CAS  Google Scholar 

  33. T.G. Altincekic, İ. Boz, A. Baykal, S. Kazan, R. Topkaya, M.S. Toprak, J. Alloy Compd. 493, 493 (2010)

    Article  CAS  Google Scholar 

  34. M.J. Buerger, Crystal-Structure Analysis (Wiley, New York, 1960)

    Google Scholar 

  35. H. Ohnishi, T. Teranishi, S. Miyahara, J. Phys. Soc. Jpn. 14, 106 (1959)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fatih University under BAP Grant No: P50021301-Y (3146) and in part by Swedish Research Council (VR-SRL 2013-6780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Demir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavas, H., Baykal, A., Demir, A. et al. ZnxCu(1−x)Fe2O4 Nanoferrites by Sol–Gel Auto Combustion Route: Cation Distribution and Microwave Absorption Properties. J Inorg Organomet Polym 24, 963–970 (2014). https://doi.org/10.1007/s10904-014-0069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0069-1

Keywords

Navigation