Skip to main content
Log in

Global minimization of rational functions and the nearest GCDs

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper discusses the global minimization of rational functions with or without constraints. We propose sum of squares relaxations to solve these problems, and study their properties. Some special features are discussed. First, we consider minimization of rational functions without constraints. Second, as an application, we show how to find the nearest common divisors of polynomials via unconstrained minimization of rational functions. Third, we discuss minimizing rational functions under some constraints which are described by polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnon, D., McCallum, S.: A polynomial time algorithm for the topological type of a real algebraic curve. J. Symbol. Comput. 5, 213–236

  2. Brown, W., Traub, J.: On Euclid’s algorithm and the theory of subresultants. J. ACM 18, 505–514

  3. Collins, G.: Subresultants and reduced polynomial remainder sequences. J. ACM 14, 128–142

  4. Curto R.E. and Fialkow L. (2000). The truncated complex K-moment problem. Trans. Amer. Math. Soc. 352: 2825–2855

    Article  Google Scholar 

  5. de Klerk, E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Applied Optimization Series, vol. 65, 300 pp. Kluwer Academic Publishers, (2002)

  6. Delzell C. and Prestel A. (2001). Positive Polynomials, Monographs in Mathematics. Springer, Berlin

    Google Scholar 

  7. Garey, M., Johnson, D.: Computers and Intractability: A guide to the theory of NP-completeness. W.H. Freeman, and Company, New York (1979)

  8. Henrion D. and Lasserre J. (2003). GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Soft. 29: 165–194

    Article  Google Scholar 

  9. Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control, Lecture Notes on Control and Information Sciences. Springer Verlag, Berlin (2005)

  10. Jibetean D. and de Klerk E. (2006). Global optimization of rational functions: a semidefinite programming approach. Math. Prog. 106(1): 93–109

    Article  Google Scholar 

  11. Jibetean, D., Laurent M.: Semidefinite approximations for global unconstrained polynomial optimization. To appear in SIAM J. Optim.

  12. Karmarkar, N., Lakshman, Y.: Approximate polynomial greatest common divisors and nearest singular polynomials. In: Proceedings ISSAC’96 (Zurich, Switzerland). ACM Press, New York

  13. Karmarkar N. and Lakshman Y. (1998). On approximate GCDs of univariate polynomials. J. Symbol. Comput. 26: 653–666

    Article  Google Scholar 

  14. Kojima M., Kim S. and Waki H. (2003). Sparsity in sums of squares of polynomials.Math. Program. 103(1): 45–62

    Article  Google Scholar 

  15. Lasserre J. (2001). Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3): 796–817

    Article  Google Scholar 

  16. Laurent, M.: Semidefinite representations for finite varieties. To appear in Math. Prog.

  17. Löfberg, J.: YALMIP: A MATLAB toolbox for rapid prototyping of optimization problems. Website: http://control.ee.ethz.ch/~joloef/yalmip.php

  18. Manocha D., Demmel J. Algorithms for interesting parametric and implicit curves I: simple intersections. ACM Trans. Graphics. 13, 73–100

  19. Nesterov, Y.: Squared functional systems and optimization problems. In: Frenk, H. et al. (eds.) High Performance Optimization, pp. 405–440. Kluwer Academic Publishers, Dordrecht (2000)

  20. Nie, J., Demmel, J.: Shape optimization of transfer functions. In: Hager, W., Pardalos, P., Huang, S. et al. (eds.) Multiscale optimization methods and applications, pp. 313–326. Springer series on nonconvex optimization and its application series, Berlin (2005)

  21. Nie J., Demmel J. and Sturmfels B. (2006). Minimizing polynomials via sum of squares over the gradient ideal. Math. Prog. Ser. A 106(3): 587–606

    Article  Google Scholar 

  22. Nie, J., Schweighofer, M.: On the complexity of Putinar’s Positivstellensatz. To appear in J. Complexity.

  23. Parrilo P. and Sturmfels B. (2003). Minimizing polynomial functions. In: Basu, S. and Gonzalez-Vega, L. (eds) Proceedings of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science (March 2001), pp 83–100. American Mathematical Society, Providence RI

    Google Scholar 

  24. Parrilo P. (2003). Semidefinite programming relaxations for semialgebraic problems. Math. Prog. Ser. B 96(2): 293–320

    Article  Google Scholar 

  25. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.: SOSTOOLS User’s Guide. http://www.mit.edu/~parrilo/SOSTOOLS/

  26. Putinar M. (1993). Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42: 203–206

    Article  Google Scholar 

  27. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. Contemporary Mathematics, vol 253, pp. 251–272. American Mathematical Society, Providence, RI (2000)

  28. Rockafellar, R.: Convex Analysis, 2nd edn. Princeton University Press, Princeton, UJ (1970)

  29. Scheiderer C. (2005). Distinguished representations of non-negative polynomials. J. Algebra 289: 558–573

    Article  Google Scholar 

  30. Sherali H. and Tuncbilek C. (1992). A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique. J. Glob. Optim. 2: 101–112

    Article  Google Scholar 

  31. Shor N. (1987). Quadratic optimization problems. Soviet J. Comput. Systems Sci. 25: 1–11

    Google Scholar 

  32. Stengle G. (1996). Complexity estimates for the Schmüdgen positivstellensatz. J. Complexity 12: 167–174

    Article  Google Scholar 

  33. Stetter, H.: Numerical Polynomial Algebra. Society of Industrial and Applied Mathematics (2004)

  34. Sturm J.F. (1999). SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Method Softw. 11 & 12: 625–653

    Article  Google Scholar 

  35. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. To appear in SIAM J. Optim.

  36. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer Academic Publishers, Dordrecht (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawang Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, J., Demmel, J. & Gu, M. Global minimization of rational functions and the nearest GCDs. J Glob Optim 40, 697–718 (2008). https://doi.org/10.1007/s10898-006-9119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9119-8

Keywords

Navigation