Skip to main content

Polynomial Equations: Theory and Practice

  • Chapter
  • First Online:
Polynomial Optimization, Moments, and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 206))

  • 188 Accesses

Abstract

Solving polynomial equations is a subtask of polynomial optimization. This chapter introduces systems of such equations and the main approaches for solving them. We discuss critical point equations, algebraic varieties, and solution counts. The theory is illustrated by many examples using different software packages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldi, L., Mourrain, B.: Computing real radicals by moment optimization. In: Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, pp. 43–50 (2021)

    Google Scholar 

  2. Bates, D.J., Sommese, A.J., Hauenstein, J.D., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)

    Book  Google Scholar 

  3. Batselier, K.: A numerical linear algebra framework for solving problems with multivariate polynomials. PhD thesis, Faculty of Engineering, KU Leuven, Leuven (2013)

    Google Scholar 

  4. Bender, M.R., Telen, S.: Yet another eigenvalue algorithm for solving polynomial systems (2021). arXiv preprint. arXiv:2105.08472

    Google Scholar 

  5. Bender, M.R., Telen, S.: Toric eigenvalue methods for solving sparse polynomial systems. Math. Comput. 91(337), 2397–2429 (2022)

    Article  MathSciNet  Google Scholar 

  6. Bernstein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9(3), 183–185 (1975)

    Article  MathSciNet  Google Scholar 

  7. Berthomieu, J., Eder, C., Safey El Din, M.: msolve: a library for solving polynomial systems. In: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation, pp. 51–58 (2021)

    Google Scholar 

  8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993)

    Google Scholar 

  9. Breiding, P.: An algebraic geometry perspective on topological data analysis (2020). arXiv preprint. arXiv:2001.02098

    Google Scholar 

  10. Breiding, P., Timme, S.: HomotopyContinuation.jl: a package for homotopy continuation in Julia. In: International Congress on Mathematical Software, pp. 458–465. Springer, Berlin (2018)

    Google Scholar 

  11. Breiding, P., Rose, K., Timme, S.: Certifying zeros of polynomial systems using interval arithmetic (2020). arXiv preprint. arXiv:2011.05000

    Google Scholar 

  12. Breiding, P., Çelik, T.Ö., Duff, T., Heaton, A., Maraj, A., Sattelberger, A.-L., Venturello, L., Yürük, O.: Nonlinear algebra and applications (2021). arXiv preprint. arXiv:2103.16300

    Google Scholar 

  13. Cox, D.A.: Applications of Polynomial Systems, vol. 134 American Mathematical Society, Providence, (2020)

    Google Scholar 

  14. Cox, D.A., Little, J.B., O’Shea, D.: Using Algebraic Geometry, vol. 185. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  15. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, corrected fourth edition. Springer Science & Business Media, Berlin (2018)

    Book  Google Scholar 

  16. Darmon, H., Diamond, F., Taylor, R.: Fermat’s last theorem. Curr. Dev. Math. 1995(1), 1–154 (1995)

    Article  MathSciNet  Google Scholar 

  17. Desjardins, J., Winter, R.: Density of rational points on a family of del Pezzo surfaces of degree one. Adv. Math. 405, 108489 (2022)

    Article  MathSciNet  Google Scholar 

  18. Dickenstein, A.: Biochemical reaction networks: an invitation for algebraic geometers. In: Mathematical Congress of the Americas, vol. 656, pp. 65–83. Contemp. Math. (2016)

    Google Scholar 

  19. Draisma, J., Horobeţ, E., Ottaviani, G., Sturmfels, B., Thomas, R.R.: The Euclidean distance degree of an algebraic variety. Found. Comput. Math. 16(1), 99–149 (2016)

    Article  MathSciNet  Google Scholar 

  20. Duff, T., Hill, C., Jensen, A., Lee, K., Leykin, A., Sommars, J.: Solving polynomial systems via homotopy continuation and monodromy. IMA J. Numer. Anal. 39(3), 1421–1446 (2019)

    Article  MathSciNet  Google Scholar 

  21. Eisenbud, D., Harris, J.: The Geometry of Schemes, vol. 197. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  22. Emiris, I.Z., Mourrain, B.: Computer algebra methods for studying and computing molecular conformations. Algorithmica 25(2), 372–402 (1999)

    Article  MathSciNet  Google Scholar 

  23. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  24. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  25. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular—a computer algebra system for polynomial computations. In: Symbolic Computation and Automated Reasoning, pp. 227–233. AK Peters/CRC Press, Natick (2001)

    Google Scholar 

  26. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64(212), 1541–1555 (1995)

    Article  MathSciNet  Google Scholar 

  27. Huber, B., Sturmfels, B.: Bernstein’s theorem in affine space. Discret. Comput. Geom. 17(2), 137–141 (1997)

    Article  MathSciNet  Google Scholar 

  28. Hubert, E., Rodriguez Bazan, E.: Algorithms for fundamental invariants and equivariants. Math. Comput. 91(337), 2459–2488 (2022)

    Article  MathSciNet  Google Scholar 

  29. Kaveh, K., Khovanskii, A.G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 925–978 (2012)

    Article  MathSciNet  Google Scholar 

  30. Khovanskii, A.G.: Newton polyhedra and the genus of complete intersections. Funct. Anal. Appl. 12(1), 38–46 (1978)

    Article  MathSciNet  Google Scholar 

  31. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: European Conference on Computer Vision, pp. 302–315. Springer, Berlin (2008)

    Google Scholar 

  32. Kushnirenko, A.G.: Newton polytopes and the Bézout theorem. Funct. Anal. Appl. 10(3), 233–235 (1976)

    Article  Google Scholar 

  33. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  34. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry, pp. 157–270. Springer, Berlin (2009)

    Google Scholar 

  35. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, vol. 161. American Mathematical Society, Providence (2021)

    Google Scholar 

  36. Maplesoft, a division of Waterloo Maple Inc.. Maple

    Google Scholar 

  37. Michałek, M., Sturmfels, B.: Invitation to Nonlinear Algebra, vol. 211. American Mathematical Society, Providence (2021)

    Google Scholar 

  38. Mitankin, V., Salgado, C.: Rational points on del Pezzo surfaces of degree four (2020). arXiv preprint. arXiv:2002.11539

    Google Scholar 

  39. Mourrain, B.: A new criterion for normal form algorithms. In: International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, pp. 430–442 (1999)

    Google Scholar 

  40. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44(3), 292–306 (2009)

    Article  MathSciNet  Google Scholar 

  41. Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.: Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found. Comput. Math. 16(1), 69–97 (2016)

    Article  MathSciNet  Google Scholar 

  42. Oscar – open source computer algebra research system, version 0.9.0 (2022)

    Google Scholar 

  43. Sala, M.: Gröbner bases, coding, and cryptography: a guide to the state-of-art. In: Gröbner Bases, Coding, and Cryptography, pp. 1–8. Springer, Berlin (2009)

    Google Scholar 

  44. Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6), 2022–2046 (2001)

    Article  MathSciNet  Google Scholar 

  45. Sommese, A.J., Wampler, C.W., et al.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  Google Scholar 

  46. Sturmfels, B.: Solving Systems of Polynomial Equations. Number 97. American Mathematical Society, Providence (2002)

    Google Scholar 

  47. Telen, S.: Solving Systems of Polynomial Equations. PhD thesis, KU Leuven, Leuven (2020). Available at https://simontelen.webnode.page/publications/

  48. Telen, S.: Introduction to toric geometry (2022). arXiv preprint. arXiv:2203.01690

    Google Scholar 

  49. Telen, S., Van Barel, M.: A stabilized normal form algorithm for generic systems of polynomial equations. J. Comput. Appl. Math. 342, 119–132 (2018)

    Article  MathSciNet  Google Scholar 

  50. Telen, S., Mourrain, B., Van Barel, M.: Solving polynomial systems via truncated normal forms. SIAM J. Matrix Anal. Appl. 39(3), 1421–1447 (2018)

    Article  MathSciNet  Google Scholar 

  51. Telen, S., Van Barel, M., Verschelde, J.: A robust numerical path tracking algorithm for polynomial homotopy continuation. SIAM J. Sci. Comput. 42(6), A3610–A3637 (2020)

    Article  MathSciNet  Google Scholar 

  52. Timme, S.: Mixed precision path tracking for polynomial homotopy continuation. Adv. Comput. Math. 47(5), 1–23 (2021)

    Article  MathSciNet  Google Scholar 

  53. Verschelde, J.: Algorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

    Article  Google Scholar 

  54. Wampler, C.W., Sommese, A.J.: Numerical algebraic geometry and algebraic kinematics. Acta Numer. 20, 469–567 (2011)

    Article  MathSciNet  Google Scholar 

  55. Wolfram Research, Inc., Mathematica, Version 12.3. Champaign, IL (2022) https://www.wolfram.com/mathematica

Download references

Acknowledgements

This chapter is based on an introductory lecture given at the workshop Solving polynomial equations and applications organized at CWI, Amsterdam in October 2022. I thank Monique Laurent for involving me in this workshop, and all other speakers and attendants for making it a success. I was supported by a Veni grant from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Telen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Telen, S. (2023). Polynomial Equations: Theory and Practice. In: Kočvara, M., Mourrain, B., Riener, C. (eds) Polynomial Optimization, Moments, and Applications. Springer Optimization and Its Applications, vol 206. Springer, Cham. https://doi.org/10.1007/978-3-031-38659-6_8

Download citation

Publish with us

Policies and ethics