Skip to main content
Log in

Minimizing Polynomials via Sum of Squares over the Gradient Ideal

  • Published:
Mathematical Programming Submit manuscript

Abstract

A method is proposed for finding the global minimum of a multivariate polynomial via sum of squares (SOS) relaxation over its gradient variety. That variety consists of all points where the gradient is zero and it need not be finite. A polynomial which is nonnegative on its gradient variety is shown to be SOS modulo its gradient ideal, provided the gradient ideal is radical or the polynomial is strictly positive on the real gradient variety. This opens up the possibility of solving previously intractable polynomial optimization problems. The related problem of constrained minimization is also considered, and numerical examples are discussed. Experiments show that our method using the gradient variety outperforms prior SOS methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer-Verlag, 2003

  2. Berg, C.: The multidimensional moment problem and semi-groups. In: Moments in Mathematics, H.J. Landau (ed.), AMS, Providence, RI, 1980, pp 110–124

  3. Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry, Springer, 1998

  4. Blekherman, G.: There are significantly more nonnegative polynomials than sums of squares. To appear in Israel Journal of Mathematics

  5. Becker, E., Neuhaus, R.: Computation of real radicals of polynomial ideals. Computational algebraic geometry (Nice, 1992), 1–20, Progress in Mathematics, 109, Birkhäuser, Boston, MA, 1993

  6. Becker, E., Neuhaus, R.: Computation of real radicals of polynomial ideals. II. J. Pure Appl. Algebra 124, 261–280 (1998)

    Article  Google Scholar 

  7. Cox, D.A., Little, J.B., D.O'Shea.: Ideals, Varieties and Algorithms: an Introduction to Computational Algebraic Geometry and Commutative Algebra, Second Edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997

  8. Cox, D.A., Little, J.B., D.O'Shea.: Using Algebraic Geometry, Graduate Texts in Mathematics, Vol. 185. Springer-Verlag, New York, 1998

  9. Corless, R.M., Gianni, P.M., Trager, B.M.: A reorder Schur factorization method for zero-dimensional polynomial systems with multiple roots. Proc. ACM Int. Symp. Symbolic and Algebraic Computation, Maui, Hawaii, 1997, pp 133–140

  10. Curto, R.E., Fialkow, L.A.: The truncated complex K-moment problem. Trans. Am. Math. Soc. 352, 2825–2855 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Vol. 150. Springer-Verlag, New York, 1995

  12. Fortuna, E., Gianni, P., Trager, B.: Derivations and radicals of polynomial ideals over fields of arbitrary characteristic. Computer algebra (London, ON, 2001). J. Symbolic Comput. 33 (5), 609–625 (2002)

    Google Scholar 

  13. Grigoriev, D., Vorobjov, N. N., Jr. Solving systems of polynomial inequalities in subexponential time. J. Symbolic Comput. 5 (1–2), 37–64 (1988)

    Google Scholar 

  14. Hanzon, B., Jibetean, D.: Global minimization of a multivariate polynomial using matrix methods. J. Global Optimization 27, 1–23 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Henrion, D., Lasserre, J. B.: GloptiPoly: Global Optimization over Polynomials with Matlab and SeDuMi. Proceeding of the 41st IEEE Conference on Decision and Control (CDC'2002), Las Vegas, Nevada, December 10–13, 2002, pp 747–752

  16. Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. Positive polynomials in control, D. Henrion, A. Garulli Eds., Lecture Notes on Control and Information Sciences, Vol. 312, Springer, Berlin, 2005, pp 293–310

  17. Jibetean, D., Laurent, M.: Converging SDP bounds for global unconstrained polynomial optimization. Preprint, 2004. Website: http://www.cwi.nl/~monique

  18. Krick, T., Logar, A.: An algorithm for the computation of the radical of an ideal in the ring of polynomials. Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., 539, Springer, Berlin, 1991, pp 195–205

  19. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11 (3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  20. Laurent, M.: Semidefinite representations for finite varieties. To appear in Mathematical Programming. Website: http://www.cwi.nl/~monique

  21. Marshall, M.: Optimization of polynomial functions. Canad. Math. Bull. 46, 575–587 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Nesterov, Y.: Squared functional systems and optimization problems. High Performance Optimization H. Frenk et al. (eds.), Kluwer Academic Publishers, 2000, pp 405–440

  23. Nie, J., Demmel, J. W.: Minimum ellipsoid bounds for solutions of polynomial systems via sum of squares, to appear in J. Global Optimization, arXiv:math.OC/0411122

  24. Nie, J., Demmel, J. W., Powers, V.: Representations of positive polynomials on non-compact semialgebraic sets via KKT ideals. Preprint, 2005

  25. Nocedal, J., Wright, S. J.: Numerical Optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999

  26. Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, Ph.D Thesis, California Institute of Technology, 2000

  27. Parrilo, P., Sturmfels, B.: Minimizing polynomial functions, Proceedings of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science (March 2001), S. Basu, L. Gonzalez-Vega (eds.), American Mathematical Society, 2003, pp 83–100

  28. Parrilo, P.: Semidefinite Programming relaxations for semialgebraic problems. Math. Program. Ser. B 96 (2), 293–320 (2003)

    Article  MathSciNet  Google Scholar 

  29. Prajna, S., Papachristodoulou, A., Parrilo, P.: SOSTOOLS User's Guide. http://control.ee.ethz.ch/~parrilo/SOSTOOLS/

  30. Parrilo, P.: An explicit construction of distinguished representations of polynomials nonnegative over finite sets, If A Technical Report AUT02-02, March 2002

  31. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42, 203–206 (1993)

    Article  MathSciNet  Google Scholar 

  32. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. I-III. J. Symbolic Comput. 13 (3), 255–352 (1992)

    Article  MathSciNet  Google Scholar 

  33. Reznick, B.: Some concrete aspects of Hilbert's 17th problem. In Contemporary Mathematics, volume 253, American Mathematical Society, 2000, pp 251–272

  34. Shafarevich. Basic algebraic geometry. Die Grundlehren der mathematischen Wissenschaften. Band 213. Springer-Verlag, 1974

  35. L. Vandenberghe and S. Boyd. Semidefinite Programming. SIAM Review 38, 49–95 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawang Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, J., Demmel, J. & Sturmfels, B. Minimizing Polynomials via Sum of Squares over the Gradient Ideal. Math. Program. 106, 587–606 (2006). https://doi.org/10.1007/s10107-005-0672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0672-6

Keywords

Navigation