Skip to main content
Log in

A highly Selective Fluorescent Chemosensor for Zn2+ Based on the Rhodamine Derivative Incorporating Coumarin Group

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A coumarin-appended rhodamine derivative was prepared by reacting rhodamine hydrazide and coumarin-3-carboxylic acid, which fluorescence sensing behavior toward Zn2+ against other metal ions was investigated in CH3CN. Significantly, the rodamine-coumarin derivative exhibited highly selective and sensitive recognition toward Zn2+ with a limit of detection (LOD) down to 10−9 M. Upon addition of Zn2+, remarkable fluorescent intensities enhanced and also clear color changed from colorless to pink. The Job’s plot indicated the formation of 1:1 complex between the rhodamine-coumarin derivative and Zn2+. The presence of common coexisting alkali, alkaline earth, and transition metal ions showed small or no interference with the detection of Zn2+. The conjugate dye could be used for “naked-eye” detection of Zn2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Parkesh R, Lee TC, Gunnlaugsson T (2007) Highly selective 4-amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) chemosensors for Zn(II) under physiological pH conditions. Org Biomol Chem 5:310–317

    Article  CAS  PubMed  Google Scholar 

  2. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T (2000) Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J Am Chem Soc 122:12399–12400

    Article  CAS  Google Scholar 

  3. Xu Z, Baek KH, Kim HN, Cui J, Qian X, Spring DR, Shin I, Yoon J (2009) Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. J Am Chem Soc 132:601–610

    Article  Google Scholar 

  4. Meng XM, Zhu MZ, Liu L, Guo QX (2006) Novel highly selective fluorescent chemosensors for Zn(II). Tetrahedron Lett 47:1559–1562

    Article  CAS  Google Scholar 

  5. Ajayaghosh A, Carol P, Sreejith SN (2005) A ratiometric, fluorescence probe for selective visual sensing of Zn2+. J Am Chem Soc 127:14962–14963

    Article  CAS  PubMed  Google Scholar 

  6. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  CAS  PubMed  Google Scholar 

  7. Li M, Lu HY, Liu RL, Chen JD, Chen CF (2012) Turn-on fluorescent sensor for selective detection of Zn2+, Cd2+, and Hg2+ in water. J Org Chem 77:3670–3673

    Article  CAS  PubMed  Google Scholar 

  8. Qian F, Zhang C, Zhang Y, He W, Gao X, Hu P, Guo Z (2009) Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. J Am Chem Soc 131:1460–1468

    Article  CAS  PubMed  Google Scholar 

  9. Dakanali M, Roussakis E, Kay AR, Katerinopoulos HE (2005) Synthesis and photophysical properties of a fluorescent TREN type ligand incorporating the coumarin chromophore and its zinc complex. Tetrahedron Lett 46:4193–4196

    Article  CAS  Google Scholar 

  10. Yu H, Li G, Zhang B, Zhang X, Xiao Y, Wang J, Song Y (2016) A neutral pH probe of rhodamine derivatives inspired by effect of hydrogen bond on pKa and its organelle-targetable fluorescent imaging. Dyes Pigments 133:93–99

    Article  CAS  Google Scholar 

  11. Kikuchi K, Komatsu H, Nagano T (2004) Zinc sensing for cellular application. Curr Opin Chem Biol 8:182–191

    Article  CAS  PubMed  Google Scholar 

  12. Carol P, Sreejith S, Ajayaghosh A (2007) Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions. Chem Asian J 2:338–348

    Article  CAS  PubMed  Google Scholar 

  13. Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. Acc Chem Res 42:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuasa J, Mitsui A, Kawai T (2011) π–π* emission from a tetrazine derivative complexed with zinc ion in aqueous solution: a unique water-soluble fluorophore. Chem Commun 47:5807–5809

    Article  CAS  Google Scholar 

  15. Zhang Y, Guo X, Si W, Jia L, Qian X (2008) Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Org Lett 10:473–476

    Article  CAS  PubMed  Google Scholar 

  16. Xue L, Liu C, Jiang H (2009) Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Org Lett 11:1655–1658

    Article  CAS  PubMed  Google Scholar 

  17. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472

    Article  CAS  PubMed  Google Scholar 

  18. Shi W, Ma H (2008) Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chem Commun:1856–1858

  19. Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent chemodo-simeter selective for Cu(II) ion in water. J Am Chem Soc 119:7386–7387

    Article  CAS  Google Scholar 

  20. Xiang Y, Tong A (2006) A new rhodamine-based chemosensor exhibiting selective Fe(III)-amplified fluorescence. Org Lett 8:1549–1552

    Article  CAS  PubMed  Google Scholar 

  21. Kwon JY, Jang YJ, Lee YJ, Kim K, Seo M, Nam W, Yoon J (2005) A highly selective fluorescent chemosensor for Pb2+. J Am Chem Soc 127:10107–10111

    Article  CAS  PubMed  Google Scholar 

  22. Huang K, Yang H, Zhou Z, Yu M, Li F, Gao Z, Yi T, Huang C (2008) Multisignal chemosensor for Cr3+ and its application in bioimaging. Org Lett 10:2557–2560

    Article  CAS  PubMed  Google Scholar 

  23. Tang Y, Cui S, Pu S (2016) A dual-channel sensor for Hg2+ based on a diarylethene with a rhodamine B unit. J Fluoresc 26:1421–1429

    Article  CAS  PubMed  Google Scholar 

  24. Tang L, Li F, Liu M, Nandhakumar R (2011) A new rhodamine B-coumarin fluorochrome for colorimetric recognition of Cu2+ and fluorescent recognition of Fe3+ in aqueous media. Bull Kor Chem Soc 32:3400–3404

    Article  CAS  Google Scholar 

  25. Wu JS, Liu WM, Zhuang XQ, Wang F, Wang PF, Tao SL, Zhang XH, Wu SK, Lee ST (2007) Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C = N isomerization. Org Lett 9:33–36

    Article  CAS  PubMed  Google Scholar 

  26. Xiang Y, Tong AJ, Jin PY, Ju Y (2006) New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett 8:2863–2866

    Article  CAS  PubMed  Google Scholar 

  27. Jiang BP, Tan X, Shen XC, Lei WQ, Liang WQ, Ji SC, Liang H (2016) One-step fabrication of a multifunctional aggregation-induced emission nanoaggregate for targeted cell imaging and enzyme-triggered cancer chemotherapy. ACS Macro Lett 5:450–454

    Article  CAS  Google Scholar 

  28. Zhang YH, Zhang YM, Chen Y, Yang Y, Liu Y (2014) Phenanthroline bridged bis(β-cyclodextrin)s/ adamantane-carboxylic acid supramolecular complex as an efficient fluorescence sensor to Zn2+. Org Chem Front 1:355–360

    Article  CAS  Google Scholar 

  29. Wang KP, Chen Y, Liu Y (2015) A polycation-induced secondary assembly of amphiphilc calixarene and its multi-stimuli responsive gelation behavior. Chem Commun 51:1647–1649

    Article  CAS  Google Scholar 

  30. Yuan MJ, Zhou WD, Liu XF, Zhu M, Li JB, Yin XD, Zheng HY, Zuo ZC, Ouyang CB, Liu HB, Li YL, Zhu DB (2008) A multianalyte chemosensor on a single molecule: promising structure for an integrated logic gate. J Org Chem 73:5008–5014

    Article  CAS  PubMed  Google Scholar 

  31. Dhara K, Karan S, Ratha J, Roy P, Chandra G, Manassero M, Mallik B, Banerjee P (2007) A two-dimensional coordination compound as a zinc ion selective luminescent probe for biological applications. Chem Asian J 2:1091–1100

    Article  CAS  PubMed  Google Scholar 

  32. Hu ZQ, Wang XM, Feng YC, Ding L, Lu HY (2011) Sulfonyl rhodamine hydrazide: a sensitive and selective chromogenic and flurescent chemodosimeter for copper ion in aqueous media. Dyes Pigments 88:257–261

    Article  CAS  Google Scholar 

  33. Hu ZQ, Li M, Liu MD, Zhuang WM, Li GK (2013) A highly sensitive fluorescent acidic pH probe based on rhodamine B diethyl-2-aminobutenedioate conjugate and its application in living cells. Dyes Pigments 96:71–75

    Article  CAS  Google Scholar 

  34. Li G, Tang J, Ding P, Ye Y (2016) A rhodamine-benzimidazole based chemosensor for Fe3+ and its application in living cells. J Fluoresc 26:155–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21172127) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun-Peng Wang or Zhi-Qiang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KP., Jin, ZH., Shang, HS. et al. A highly Selective Fluorescent Chemosensor for Zn2+ Based on the Rhodamine Derivative Incorporating Coumarin Group. J Fluoresc 27, 629–633 (2017). https://doi.org/10.1007/s10895-016-1991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1991-0

Keywords

Navigation