Skip to main content
Log in

A Rhodamine-Based Fluorescent Chemosensor for the Detection of Pb2+, Hg2+ and Cd2+

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new rhodamine-based fluorescent chemosensor (1) has been designed and synthesized by linking rhodamine 6G hydrazide with N-methylisatin via an imine linkage. The receptor can selectively recognize and sense Pb2+, Hg2+ and Cd2+ by showing different fluorescence characteristics. In ethanol/HEPES buffer medium, the addition of Cd2+ caused a yellowish-green fluorescence, while the presence of Pb2+ or Hg2+ gave rise to an orange fluorescence. Additionally, the sensor shows an irreversible fluorescence response to Pb2+ and reversible fluorescence responses to Hg2+ and Cd2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Finkelstein Y, Markowitz ME, Rosen JF (1998) Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain res rev 27:168–176. doi:10.1016/S0165-0173(98)00011-3

    Article  CAS  PubMed  Google Scholar 

  2. Bolger PM, Schwetz BA (2002) Mercury and health. N Engl J med 347:1735–1736. doi:10.1056/NEJMp020139

    Article  PubMed  Google Scholar 

  3. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117. doi:10.1016/S0300-483X(03)00305-6

    Article  CAS  PubMed  Google Scholar 

  4. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem rev 114:4564–4601. doi:10.1021/cr400546e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeong Y, Yoon J (2012) Recent progress on fluorescent chemosensors for metal ions. Inorg Chim Acta 381:2–14. doi:10.1016/j.ica.2011.09.011

    Article  CAS  Google Scholar 

  6. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc rev 41:3210–3244. doi:10.1039/C1CS15245A

    Article  CAS  PubMed  Google Scholar 

  7. Xu L, Xu Y, Zhu W, Sun X, Xu Z, Qian X (2012) Modulating the selectivity by switching sensing media: a bifunctional probe selectivity for Cd2+ and Pb2+ in different aqueous solutions. RSC Adv 2:6323–6328. doi:10.1039/C2RA20840G

    Article  CAS  Google Scholar 

  8. Lv Y, Wu L, Shen W, Wang J, Xuan G, Sun X (2015) A porphyrin-based chemosensor for colorimetric and fluorometric detection of cadmium(II) with high selectivity. J Porphyr Phthalocya 19:769–774. doi:10.1142/S1088424615500510

    Article  CAS  Google Scholar 

  9. Liu Q, Feng L, Yuan C, Zhang L, Shuang S, Dong C, Hu Q, Choi MMF (2014) A highly selective fluorescent probe for cadmium ions in aqueous solution and living cells. Chem Commun 50:2498–2501. doi:10.1039/C3CC48668K

    Article  CAS  Google Scholar 

  10. Cheng T, Wang T, Zhu W, Chen X, Yang Y, Xu Y, Qian X (2011) A simple highly sensitive and selective TURN-ON fluorescent chemosensor for the detection of cadmium ions in physiological conditions. OrgLett 13:3656–3659. doi:10.1021/ol201305d

    CAS  Google Scholar 

  11. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc rev 37:1465–1472. doi:10.1039/B802497A

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem rev 112:1910–1956. doi:10.1021/cr200201z

    Article  CAS  PubMed  Google Scholar 

  13. Wang M, Yan F, Zou Y, Chen L, Yang N, Zhou X (2014) Recognition of Cu2+ and Hg2+ in physiological conditions by a new rhodamine based dual channel fluorescent probe. Sensors Actuators B Chem 192:512–521. doi:10.1016/j.snb.2013.11.031

    Article  CAS  Google Scholar 

  14. Hua J, Hua Z, Cui Y, Zhang X, Gao H-W, Uvdal K (2014) A rhodamine-based fluorescent probe for Hg2+ and its application for biological visualization. Sensors Actuators B Chem 203:452–458. doi:10.1016/j.snb.2014.06.104

    Article  Google Scholar 

  15. Chen X, Meng X, Wang S, Cai Y, Wu Y, Feng Y, Zhua M, Guo Q (2013) A rhodamine-based fluorescent probe for detecting Hg2+ in a fully aqueous environment. Dalton Trans 42:14819–14825. doi:10.1039/C3DT51279G

    Article  CAS  PubMed  Google Scholar 

  16. Kwon JY, Jang YJ, Lee YJ, Kim KM, Seo MS, Nam W, Yoon J (2005) A highly selective fluorescent chemosensor for Pb2+. J am Chem Soc 127:10107–10111. doi:10.1021/ja051075b

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh K, Sarkar T, Majumdar A, Mandal SK, Khuda-Bukhsh AR (2014) Rhodamine-labelled simple architectures for fluorometric and colorimetric sensing of Hg2+ and Pb2+ ions in semi-aqueous and aqueous environments. Anal Methods 6:2648–2654. doi:10.1039/C4AY00217B

    Article  CAS  Google Scholar 

  18. Goswami S, Aich K, Das S, Das AK, Manna A, Halder S (2013) A highly selective and sensitive probe for colorimetric and fluorogenic detection of Cd2+ in aqueous media. Analyst 138:1903–1907. doi:10.1039/C3AN36884J

    Article  CAS  PubMed  Google Scholar 

  19. Aich K, Goswami S, Das S, Mukhopadhyay CD, Quah CK, Fun H-K (2015) Cd2+ triggered the FRET “ON”: a new molecular switch for the ratiometric detection of Cd2+ with live-cell imaging and bound X-ray structure. Inorg Chem 54:7309–7315. doi:10.1021/acs.inorgchem.5b00784

    Article  CAS  PubMed  Google Scholar 

  20. Sheldrick GM (1997) SHELXS-97, Program for crystal structure solution. University of Göttingen, Germany

    Google Scholar 

  21. Sheldrick GM (1997) SHELXL-97, Program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  22. Zhang Z, Zheng Y, Hang W, Yan X, Zhao Y (2011) Sensitive and selective off-on rhodamine hydrazide fluorescent chemosensor for hypochlorous acid detection and bioimaging. Talanta 85:779–786. doi:10.1016/j.talanta.2011.04.078

    Article  CAS  PubMed  Google Scholar 

  23. Goswami S, Paul S, Manna A (2013) Selective “naked eye” detection of al(III) and PPi in aqueous media on a rhodamine-isatin hybrid moiety. RSC Adv 3:10639–10643

    Article  CAS  Google Scholar 

  24. Yang Y-K, Yook K-J, Tae J (2005) A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J am Chem Soc 127:16760–16761. doi:10.1039/C3RA40984H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21162010), the Natural Science Foundation of Hainan Province (No. 20162028) and Program for Innovative Research Team in University (IRT-16R19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enju Wang.

Electronic supplementary material

ESM 1

(DOC 884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W., Yuan, S. & Wang, E. A Rhodamine-Based Fluorescent Chemosensor for the Detection of Pb2+, Hg2+ and Cd2+ . J Fluoresc 27, 1871–1875 (2017). https://doi.org/10.1007/s10895-017-2124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2124-0

Keywords

Navigation