Skip to main content
Log in

Fluorescence Study of Lipid Bilayer Interactions of Eu(III) Coordination Complexes

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The interaction between Eu(III) tris-β-diketonato coordination complexes (EC), displaying antitumor activity, and lipid vesicles composed of zwitterionic lipid phosphatidylcholine has been studied using fluorescence spectroscopy techniques. To characterize EC-membrane binding, several fluorescent probes, including pyrene, Prodan and 1,6-diphenyl-1,3,5-hexatriene, have been employed. It has been found that EC display effective partitioning into lipid phase, giving rise to structural modifications of both polar and nonpolar lipid bilayer regions, viz. enhancement of membrane hydration and increase in tightness of lipid chain packing. The fact that EC accumulating in lipid bilayer are incapable of inducing significant disruption of membrane structural integrity creates strong prerequisites for development of liposomal nanocarriers of these potential antitumor drugs. Such a possibility is also corroborated by the observation that EC membrane incorporation does not prevent lipid bilayer partitioning of long-wavelength squaraine dyes which represent promising candidates for visualization of liposome biodistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Drulis-Kawa Z, Dorotkiewicz-Jach A (2010) Liposomes as delivery systems for antibiotics. Int J Pharm 387(1–2):187–198

    Article  PubMed  CAS  Google Scholar 

  2. Silva-Barcellos NM, Caligiorne S, dos Santos RAS, Frezard F (2004) Site-specific microinjection of liposomes into the brain for local infusion of a short-lived peptide. J Control Release 95(2):301–307

    Article  PubMed  CAS  Google Scholar 

  3. Loa Y, Tsaib J, Kuo J (2004) Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J Control Release 94(2–3):259–272

    Article  Google Scholar 

  4. Gürsoy A, Kut E, Özkırımlı S (2004) Co-encapsulation of isoniazid and rifampicin in liposomes and characterization of liposomes by derivative spectroscopy. Int J Pharm 271(1–2):115–123

    Article  PubMed  Google Scholar 

  5. Trotta M, Peira E, Carlotti ME, Gallarate M (2004) Deformable liposomes for dermal administration of methotrexat. Int J Pharm 270(1–2):119–125

    Article  PubMed  CAS  Google Scholar 

  6. Arcon I, Kodre A, Abra RM, Huangd A, Vallner JJ, Lasic DD (2004) EXAFS study of liposome-encapsulated cisplatin. Colloids Surf B 33(3–4):199–204

    Article  CAS  Google Scholar 

  7. Santos ND, Cox KA, McKenzie CA, van Baarda F, Gallagher RC, Karlsson G, Edwards K, Mayer LD, Allen C, Bally MB (2004) pH gradient loading of anthracyclines into cholesterol-free liposomes: enhancing drug loading rates through use of ethanol. Biochim Biophys Acta 1661(1):47–60

    Article  PubMed  Google Scholar 

  8. Zhang JA, Xuan T, Parmar M, Ma L, Ugwu S, Ali S, Ahmad I (2004) Development and characterization of a novel liposome-based formulation of SN-38. Int J Pharm 270(1–2):93–107

    Article  PubMed  CAS  Google Scholar 

  9. Wu P-C, Tsai Y-H, Liao C-C, Chang J-S, Huang Y-B (2004) The characterization and biodistribution of cefoxitin-loaded liposomes. Int J Pharm 271(1–2):31–39

    Article  PubMed  CAS  Google Scholar 

  10. Manosroi A, Kongkaneramit L, Manosroi J (2004) Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm 270(1–2):279–286

    Article  PubMed  CAS  Google Scholar 

  11. Zhang JX, Zalipsky S, Mullah N, Pechar M, Allen TM (2004) Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. Pharmacol Res 49(2):185–198

    Article  PubMed  CAS  Google Scholar 

  12. Ishida T, Ichikawa T, Ichihara M, Sadzuka Y, Kiwada H (2004) Effect of the physicochemical properties of initially injected liposomes on the clearance of subsequently injected PEGylated liposomes in mice. J Control Release 95(3):403–412

    Article  PubMed  CAS  Google Scholar 

  13. Scheffold S, Benoit J-P, Leroux J-C, Roux E, Passirani C (2004) Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J Control Release 94(2–3):447–451

    PubMed  Google Scholar 

  14. Hemmila I, Laitala V (2005) Progress in lanthanides as luminescent probes. J Fluoresc 15(4):529–541

    Article  PubMed  CAS  Google Scholar 

  15. Cummins CM, Koivunen ME, Stephanian A, Gee SJ, Hammock BD, Kennedy IM (2006) Application of europium(III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide. Biosens Bioelectron 21(7):1077–1085

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto K, Nojima T, Sano H, Majima K (2002) Fluorescent lanthanide chelates for biological systems. Macromol Symp 186(1):117–121

    Article  CAS  Google Scholar 

  17. Mignet N, le Masne de Chermont Q, Randrianarivelo T, Seguin J, Richard C, Bessodes M, Scherman D (2006) Liposome biodistribution by time resolved fluorimetry of lipophilic europium complexes. Eur Biophys J 35(2):155–161

    Article  PubMed  CAS  Google Scholar 

  18. Prosser RS, Bryant H, Bryant RG, Vold RR (1999) Lanthanide chelates as bilayer alignment tools in NMR studies of membrane-associated peptides. J Magn Reson 141(2):256–260

    Article  PubMed  CAS  Google Scholar 

  19. Gudasi KB, Havanur VC, Patil SA, Patil BR (2007) Antimicrobial Study of Newly Synthesized Lanthanide(III) Complexes of 2-[2-hydroxy-3-methoxyphenyl]-3-[2-hydroxy-3-methoxybenzylamino]-1,2-dihydroquinazolin-4(3H)-one. Met-Based Drug 2007:37348

    Google Scholar 

  20. Fricker SP (2006) The therapeutic application of lanthanides. Chem Soc Rev 35(6):524–533

    Article  PubMed  CAS  Google Scholar 

  21. Kostova I, Momekov G, Tzanova T, Karaivanova M (2006) Synthesis, characterization, and cytotoxic activity of new lanthanum (III) complexes of bis-coumarins. Bioinorg Chem Appl 2006:25651

    Google Scholar 

  22. Momekov G, Deligeorgiev T, Vasilev A, Peneva K, Konstantinov S, Karaivanova M (2006) Evaluating of the cytotoxic and pro-apoptotic activities of Eu(III) complexes with appended DNA intercalators in a panel of human malignant cell lines. Med Chem 2(5):439–445

    Article  PubMed  CAS  Google Scholar 

  23. Kim SH, Hwang SH, Kim JJ, Yoon CM, Keun SR (1998) Syntheses and properties of functional aminosquarylium dyes. Dyes Pigm 37(2):145–154

    Article  CAS  Google Scholar 

  24. Ros-Lis JV, Martinez-Manez R, Sancenon F, Soto J, Spieles M, Rurack K (2008) Squaraines as reporter units: insights into their photophysics, protonation, and metal-ion coordination behaviour. Chem Eur J 14(32):10101–10114

    Article  CAS  Google Scholar 

  25. Mui B, Chow L, Hope MJ (2003) Extrusion technique to generate liposomes of defined size. Meth Enzymol 367:3–14

    Article  PubMed  CAS  Google Scholar 

  26. Bartlett G (1959) Phosphorus assay in column chromatography. J Biol Chem 234(3):466–468

    PubMed  CAS  Google Scholar 

  27. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Plenum, New York

    Book  Google Scholar 

  28. Xiaocui M, Yinlin S, Kechun L, Songqing N (2002) The effect of fibrillar Aβ1-40 on membrane fluidity and permeability. Prot Peptide Letters 9(2):173–178

    Article  Google Scholar 

  29. Pebay-Peyroula E, Dufourc EJ, Szabo AG (1994) Location of diphenyl-hexatriene and trimethylammoniumdiphenyl-hexatriene in dipalmitoylphosphatidylcholine bilayers by neutron diffraction. Biophys Chem 53(1–2):45–56

    Article  PubMed  CAS  Google Scholar 

  30. Davenport L, Dale RE, Bisby RH, Cundall RB (1985) Transverse location of the fluorescent probe 1, 6-diphenyl-1, 3, 5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24(15):4097–4108

    Article  PubMed  CAS  Google Scholar 

  31. Pap EHW, ter Horst JJ, van Hoek A, Visser AJWG (1994) Fluorescence dynamics of diphenyl-1, 3, 5hexatrienelabeled phospholipids in bilayer membranes. Biophys Chem 48(3):337–351

    Article  PubMed  CAS  Google Scholar 

  32. Goldstein DB (1984) The effects of drugs on membrane fluidity. Annu Rev Pharmacol Toxicol 24:43–64

    Article  PubMed  CAS  Google Scholar 

  33. Arora A, Raghuraman H, Chattopadhyay A (2004) Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach. Biochem Biophys Res Commun 318(4):920–926

    Article  PubMed  CAS  Google Scholar 

  34. Repáková J, Holopainen JM, Morrow MR, McDonald MC, Ĉapková P, Vattulainen I (2005) Influence of DPH on the structure and dynamics of a DPPC bilayer. Biophys J 88(5):398–3410

    Article  Google Scholar 

  35. Dobretsov GE (1989) Fluorescent probes in the studies of cells, membranes and lipoproteins. Nauka, Moscow

    Google Scholar 

  36. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99(7):2039–2044

    Article  CAS  Google Scholar 

  37. Sugar IP, Zeng J, Chong PL-G (1991) Use of Fourier transforms in the analysis of fluorescence data. 3. Fluorescence of pyrene-labeled phosphatidylcholine in lipid bilayer membrane. A three-state model. J Phys Chem 95(19):7524–7534

    Article  CAS  Google Scholar 

  38. Fischkoff S, Vanderkooi JM (1975) Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol 65(5):663–676

    Article  PubMed  CAS  Google Scholar 

  39. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  40. Tedeschi C, Möhwald H, Kirstein S (2001) Polarity of layer-by-layer deposited polyelectrolyte films as determined by pyrene fluorescence. J Am Chem Soc 123(5):954–960

    Article  PubMed  CAS  Google Scholar 

  41. Duportail G, Lianos P (1996) In: Rosof (ed) Vesicles. Marcel Dekker, New York, pp 295–371

    Google Scholar 

  42. Barenholz Y, Cohen T, Haas E, Ottolenghi M (1996) Lateral organization of pyrene-labeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers. J Biol Chem 271(6):3085–3090

    Article  PubMed  CAS  Google Scholar 

  43. Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74(4):1984–1993

    Article  PubMed  CAS  Google Scholar 

  44. Wilson-Ashworth HA, Bahm Q, Erickson J, Shinkle A, Vu MP, Woodbury D, Bell JD (2006) Differential detection of phospholipid fluidity, order, and spacing by fluorescence spectroscopy of bis-pyrene, Prodan, nystatin, and merocyanine 540. Biophys J 91(11):4091–4101

    Article  PubMed  CAS  Google Scholar 

  45. Parasassi T, Giusti AM, Gratton E, Monaco E, Raimondi M, Ravagnan G, Sapora O (1994) Evidence for an increase in water concentration in bilayers after oxidative damage of phospholipids induced by ionizing radiation. Int J Radiat Biol 65(3):329–334

    Article  PubMed  CAS  Google Scholar 

  46. Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J Fluoresc 8(4):365–373

    Article  CAS  Google Scholar 

  47. Jyothish K, Avirah RR, Ramaiah D (2007) Development of squaraine dyes for photodynamic therapeutical applications: synthesis and study of electronic factors in the dye formation reaction. ARKIVOC 8(viii):296–310

    Google Scholar 

  48. Renard B-L, Aubert Y, Asseline U (2009) Fluorinated squaraine as near-IR label with improved properties for the labeling of oligonucleotides. Tetrahedron Lett 50(17):1897–1901

    Article  CAS  Google Scholar 

  49. Yang GC, Shi SQ, Guan W, Fang L, Su ZM (2006) Hyperpolarizabilities of para-nitroaniline and bis[4-(dimethylamino)phenyl] squaraine: the effects of functional/basis set based on TDDFT–SOS method. J Mol Struct 273(1–3):9–14

    Google Scholar 

  50. Inoue T, Pandey SS, Fujikawa N, Yamaguchi Y, Hayase S (2010) Synthesis and characterization of squaric acid based NIR dyes for their application towards dye-sensitized solar cells. J Photochem Photobiol A 213(1):23–29

    Article  CAS  Google Scholar 

  51. Pacanskya J, Waltmana RJ, Coufala H, Cox R (1988) New methods for preparing organic layered photoconductors. Int J Radiat Appl Instrum C 31(4–6):853–875

    Google Scholar 

  52. Chandrasekaran Y, Dutta GK, Kanth RB, Patil S (2009) Tetrahydroquinoxaline based squaraines: synthesis and photophysical properties. Dyes Pigm 83(2):162–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya M. Trusova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutsenko, O.K., Trusova, V.M., Gorbenko, G.P. et al. Fluorescence Study of Lipid Bilayer Interactions of Eu(III) Coordination Complexes. J Fluoresc 21, 1689–1695 (2011). https://doi.org/10.1007/s10895-011-0861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0861-z

Keywords

Navigation