Skip to main content
Log in

A new antitumoral Heteroarylaminothieno[3,2-b]pyridine derivative: its incorporation into liposomes and interaction with proteins monitored by fluorescence

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fluorescence properties of the new potent antitumoral methyl 3-amino-6-(benzo[d]thiazol-2-ylamino)thieno[3,2-b]pyridine-2-carboxylate in solution and when encapsulated in several different nanoliposome formulations were investigated. The compound exhibits very reasonable fluorescence quantum yields and a solvent sensitive emission in several polar and non-polar media, despite not being fluorescent in protic solvents. Fluorescence anisotropy measurements of the compound incorporated into liposomes revealed that this thienopyridine derivative can be carried in the hydrophobic region of the lipid membrane. Liposome formulations including this antitumor compound are nanometric in size, with a diameter lower than 130 nm and generally low polydispersity, and are promising for future drug delivery developments. The interaction of the compound with bovine serum albumin (BSA) and the multidrug resistance protein MDR1 was monitored by FRET, the compound acting as an energy acceptor. It was observed that the drug had a lower interaction with the MDR1 protein than with the native form of BSA, which is an important result regarding applications of this antitumoral drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Hayakama, R. Shioya, T. Agatsuma, H. Furokawa and Y. Sugano, Thienopyridine and benzofuran derivatives as potent anti-tumor agents possessing different structure-activity relationships, Bioorg. Med. Chem., 2004, 14, 3411–3414.

    Article  CAS  Google Scholar 

  2. M.-J. R. P. Queiroz, R. C. Calhelha, L. Vale-Silva, E. Pinto, M. S.-J. Nascimento, Novel [6-(hetero)arylamino]thieno [3,2-b]pyridines: synthesis and antitumoral activities, Eur. J. Med. Chem., 2010, 45, 5732–5738.

    Article  CAS  PubMed  Google Scholar 

  3. M.-J. R. P. Queiroz, R. C. Calhelha, L. Vale-Silva, E. Pinto, R. T. Lima and M. H. Vasconcelos, Efficient synthesis of 6-(hetero)arylthieno[3,2-b]pyridines by Suzuki-Miyaura coupling. Evaluation of growth inhibition on human tumor cell lines, SARs and effects on the cell cycle, Eur. J. Med. Chem., 2010, 46, 5628–5634.

    Article  CAS  Google Scholar 

  4. M.-J. R. P. Queiroz, R. C. Calhelha, L. Vale-Silva, E. Pinto, G. M. Almeida and M. H. Vasconcelos, Synthesis and evaluation of tumor cell growth inhibition of methyl 3-amino-6-[(hetero)arylethynyl]thieno[3,2-b]pyridine-2-carboxylates. Structure-activity relationships, effects on the cell cycle and apoptosis, Eur. J. Med. Chem., 2011, 46, 236–240.

    Article  CAS  PubMed  Google Scholar 

  5. M.-J. R. P. Queiroz, D. Peixoto, R. C. Calhelha, P. Soares, T. Santos, R. T. Lima, J. F. Campos, R. M. V. Abreu, I. C. F. R. Ferreira and M. H. Vasconcelos, New di(hetero)arylethers and di(hetero)arylamines in the thieno[3,2-b]pyridine series: Synthesis, growth inhibitory activity on human tumor cell lines and non-tumor cells, effects on cell cycle and on programmed cell death, Eur. J. Med. Chem., 2013, 69, 855–862.

    Article  CAS  PubMed  Google Scholar 

  6. D. H. Boschelli, B. Wu, A. C. B. Sosa, H. Durutlic, J. J. Chen, Y. Wang, J. M. Golas, J. Lucas and F. Boschelli, Synthesis and Src Kinase Inhibitory Activity of 2-Phenyl- and 2-Thienyl-7-phenylaminothieno[3,2-b]pyridine-6-carbonitriles, J. Med. Chem., 2005, 48, 3891–3902.

    Article  CAS  PubMed  Google Scholar 

  7. H. Heyman, R. Frey, P. Bousquet, G. Cunha, M. Moskey, A. Ahmed, N. Soni, P. Marcotte, L. Pease, K. Glaser, M. Yates, J. Bouska, D. Albert, C. B. Schaefer, P. Dandliker, K. Stewart, P. Rafferty, S. Davidsen, M. Michaelides and M. Curtin, Thienopyridine urea inhibitors of KDR kinase, Bioorg. Med. Chem. Lett., 2007, 17, 1246–1249.

    Article  CAS  PubMed  Google Scholar 

  8. M. J. Munchhof, J. S. Beebe, J. M. Casavant, B. A. Cooper, J. L. Doty, R. C. Hidgon, S. M. Hillerman, C. I. Doderstrom, E. A. Knauth, M. A. Marx, A. M. K. Rossi, S. B. Sobolov and J. Sun, Design and SAR of thienopyrimidine and thienopyridine inhibitors of VEGFR-2 kinase activity, Bioorg. Med. Chem. Lett., 2004, 14, 21–24.

    Article  CAS  PubMed  Google Scholar 

  9. S. Claridge, F. Raeppel, M.-C. Granger, N. Bernstein, O. Saavedra, L. Zhan, D. Llewellyn, A. Wahhab, R. Deziel, J. Rahil, N. Beaulieu, H. Nguyen, I. Dupont, A. Barsalou, C. Beaulieu, I. Chute, S. Gravel, M.-F. Robert, S. Lefebvre, M. Dubay, R. Pascal, J. Gillespie, Z. Jin, J. Wang, J. M. Besterman, A. R. MacLeod and A. Vaisburg, Discovery of a novel and potent series of thieno[3,2-b]pyridine-based inhibitors of c-Met and VEGFR-2 tyrosine kinases, Bioorg. Med. Chem. Lett., 2008, 18, 2793–2798.

    Article  CAS  PubMed  Google Scholar 

  10. C. Sánchez, A. Mercado, H. Conteras, P. Mendoza, J. Cabezas, C. Acevedo, C. Huidobro, E. A. Castellón, Chemotherapy sensitivity recovery of prostate cancer cells by functional inhibition and knock down of multidrug resistance proteins, Prostate, 2011, 71, 1810–1817.

    Article  PubMed  CAS  Google Scholar 

  11. N. Kahya, E. Pécheur, W. P. Boeij, D. A. Wiersma and D. Hoekstra, Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion, Biophys. J., 2001, 81, 1464–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. P. Curnow, M. Lorch, K. Charalambous and P. J. Booth, The Reconstitution and Activity of the Small Multidrug Transporter EmrE is Modulated by Non-bilayer Lipid Composition, J. Mol. Biol., 2004, 343, 213–222.

    Article  CAS  PubMed  Google Scholar 

  13. N. Wang, L. Ye, B. Q. Zhao and J. X. Yu, Spectroscopic studies on the interaction of efonidipine with bovine serum albumin, Braz. J. Med. Biol. Res., 2008, 41, 589–595.

    Article  CAS  PubMed  Google Scholar 

  14. B. Mishra, A. Barik, K. I. Priyadarsini and H. Mohan, Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins, J. Chem. Sci., 2005, 117, 641–647.

    Article  CAS  Google Scholar 

  15. Q. Yue, T. Shen, C. Wang, C. Gao and J. Liu, Study on the Interaction of Bovine Serum Albumin with Ceftriaxone and the Inhibition Effect of Zinc(II), Int. J. Spectrosc., 2012, 284173.

    Google Scholar 

  16. M. Sarkar, S. S. Paul and K. K. Mukherjea, Interaction of bovine serum albumin with a psychotropic drug alprazolam: Physicochemical, photophysical and molecular docking studies, J. Lumin., 2013, 142, 220–230.

    Article  CAS  Google Scholar 

  17. R. Punith and J. Seetharamappa, Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole, Spectrochim. Acta, Part A, 2012, 92, 37–41.

    Article  CAS  Google Scholar 

  18. X. M. He and D. C. Carter, Atomic structure and chemistry of human serum albumin, Nature, 1992, 358, 209–215.

    Article  CAS  PubMed  Google Scholar 

  19. S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K. Kobayashi, Crystal structure of human serum albumin at 2.5 Å resolution, Protein Eng., 1999, 12, 439–446.

    Article  CAS  PubMed  Google Scholar 

  20. E. M. Nagy, C. Nardon, L. Giovagnini, L. Marchiò, A. Trevisan and D. Fregona, Promising anticancer mono- and dinuclear ruthenium(III) dithiocarbamato complexes: systematic solution studies, Dalton Trans., 2011, 40, 11885–11895.

    Article  CAS  PubMed  Google Scholar 

  21. K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz and W. Minor, Structural and immunologic characterization of bovine, horse, and rabbit serum albumins, Mol. Immunol., 2012, 52, 174–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Malam, M. Loizidou and A. Seifalian, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer, Trends Pharmacol. Sci., 2009, 30, 592–599.

    Article  CAS  PubMed  Google Scholar 

  23. R. Banerjee, Liposomes: applications in medicine, J. Biomater. Appl., 2001, 16, 3–21.

    Article  CAS  PubMed  Google Scholar 

  24. K. A. Riske, L. Q. Amaral, H.-G. Döbereiner and M. T. Lamy, Mesoscopic structure in the chain-melting regime of anionic phospholipid vesicles: DMPG, Biophys. J., 2004, 86, 3722–3733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. P. Barroso, K. R. Perez, I. M. Cuccovia and M. T. Lamy, Aqueous dispersions of DMPG in low salt contain leaky vesicles, Chem. Phys. Lipids, 2012, 165, 169–177.

    Article  CAS  PubMed  Google Scholar 

  26. Y. Ran and S. H. Yalkowsky, Halothane, a novel solvent for the preparation of liposomes containing 2-4′-amino-3′-methylphenyl benzothiazole (AMPB), an anticancer drug: A technical note, AAPS Pharm. Sci. Tech., 2003, 4, 70–74.

    Article  Google Scholar 

  27. D. Perrin and B. Dempsey, Buffers for pH and Metal Ion Control, Chapman and Hall, London, 1974.

    Google Scholar 

  28. S. Batzri and E. Korn, Single bilayer liposomes prepared without sonication, Biophys. Biochim. Acta, Biomembr., 1973, 298, 1015–1019.

    Article  CAS  Google Scholar 

  29. J. Kremer, M. Esker, C. Pathmamanoharan and P. Wiersema, Vesicles of variable diameter prepared by a modified injection method, Biochemistry, 1977, 16, 3932–3935.

    Article  CAS  PubMed  Google Scholar 

  30. B. R. Lentz, Membrane “fluidity” as detected by diphenylhexatriene probes, Chem. Phys. Lipids, 1989, 50, 171–190.

    Article  CAS  Google Scholar 

  31. J. S. Vincent, S. D. Revak, C. D. Cochrane and I. W. Levin, Interactions of model human pulmonary surfactants with a mixed phospholipid bilayer assembly: Raman spectroscopic studies, Biochemistry, 1993, 32, 8228–8238.

    Article  CAS  PubMed  Google Scholar 

  32. M. T. Lamy-Freund and K. A. Riske, The peculiar thermo-structural behavior of the anionic lipid DMPG, Chem. Phys. Lipids, 2003, 122, 19–32.

    Article  CAS  PubMed  Google Scholar 

  33. E. Feitosa, P. Barreleiro and G. Olofsson, Phase transition in dioctadecyldimethylammonium bromide and chloride vesicles prepared by different methods, Chem. Phys. Lipids, 2000, 105, 201–213.

    Article  CAS  PubMed  Google Scholar 

  34. S. Fery-Forgues and D. Lavabre, Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products, J. Chem. Educ., 1999, 76, 1260–1264.

    Article  CAS  Google Scholar 

  35. J. N. Demas and G. A. Crosby, Measurement of photoluminescence quantum yields - Review, J. Phys. Chem., 1971, 75, 991–1024.

    Article  Google Scholar 

  36. D. Eaton, Reference materials for fluorescence measurement, Pure Appl. Chem., 1988, 60, 1107–1114.

    Article  CAS  Google Scholar 

  37. S. R. Meech and D. Phillips, Photophysics of some common fluorescence standards, J. Photochem., 1983, 23, 193–217.

    Article  CAS  Google Scholar 

  38. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 3rd edn, 2006.

    Book  Google Scholar 

  39. N. Mataga and T. Kubota, Molecular Interactions and Electronic Spectra, Marcel Dekker, New York, 1970.

    Google Scholar 

  40. B. Valeur, Molecular Fluorescence - Principles and Applications, Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  41. M.-J. R. P. Queiroz, S. Dias, D. Peixoto, A. R. O. Rodrigues, A. D. S. Oliveira, P. J. G. Coutinho, L. A. Vale-Silva, E. Pinto and E. M. S. Castanheira, New potential antitumoral di(hetero)arylether derivatives in the thieno[3,2-b]pyridine series: Synthesis and fluorescence studies in solution and in nanoliposomes, J. Photochem. Photobiol., A, 2012, 238, 71–80.

    Article  CAS  Google Scholar 

  42. M.-J. R. P. Queiroz, D. Peixoto, A. R. O. Rodrigues, P. Mendes, C. N. C. Costa, P. J. G. Coutinho and E. M. S. Castanheira, New 1,3-diarylureas linked by C-C Suzuki coupling to the methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate moiety: synthesis and fluorescence studies in solution and in lipid membranes, J. Photochem. Photobiol., A, 2013, 255, 27–35.

    Article  CAS  Google Scholar 

  43. M. S. D. Carvalho, A. C. L. Hortelão, R. C. Calhelha, A. S. Abreu, P. J. G. Coutinho, M.-J. R. P. Queiroz and E. M. S. Castanheira, Fluorescence studies on potential antitumor 6-(hetero)arylthieno[3,2-b]pyridine derivatives in solution and in nanoliposomes, J. Photochem. Photobiol., A, 2013, 264, 56–66.

    Article  CAS  Google Scholar 

  44. N. J. Turro, J. C. Scaiano and V. Ramamurthy, Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito (California), 2009.

    Google Scholar 

  45. Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 83rd edn, 2002.

    Google Scholar 

  46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

  47. F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, West Sussex, England, 1999.

    Google Scholar 

  48. T. Le Bahers, C. Adamo and I. Ciofini, A Qualitative Index of Spatial Extent in Charge-Transfer Excitations, J. Chem. Theory Comput., 2011, 7, 2498–2506.

    Article  PubMed  CAS  Google Scholar 

  49. L. Tian and C. Feiwu, Multiwfn: A multifunctional wavefunction analyser, J. Comput. Chem., 2012, 33, 580–592.

    Article  CAS  Google Scholar 

  50. A. S. Abreu, E. M. S. Castanheira, M.-J. R. P. Queiroz, P. M. T. Ferreira, L. A. Vale-Silva and E. Pinto, Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate, Nanoscale Res. Lett., 2011, 6, 482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. D. Papahadjopoulos and N. Miller, Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals, Biochim. Biophys. Acta, 1967, 135, 624–638.

    Article  CAS  PubMed  Google Scholar 

  52. S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys., 1962, 37, 814.

    Article  CAS  Google Scholar 

  53. J. N. Israelachvili, S. Marcelja and R. G. Horn, Physical principles of membrane organization, Q. Rev. Biophys., 1980, 13, 121–200.

    Article  CAS  PubMed  Google Scholar 

  54. D. B. Kell and C. M. Harris, On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 1. Theory and overview, Eur. Biophys. J., 1985, 12, 181–197.

    Article  CAS  PubMed  Google Scholar 

  55. C. T. Lee Jr., K. A. Smith and T. A. Hatton, Photocontrol of protein folding: the interaction of photosensitive surfactants with bovine serum albumin, Biochemistry, 2005, 44, 524–536.

    Article  CAS  PubMed  Google Scholar 

  56. K. Hirayama, S. Akashi, M. Furuya and K. I. Fukuhara, Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS, Biochem. Biophys. Res. Commun., 1990, 173, 639–646.

    Article  CAS  PubMed  Google Scholar 

  57. The Proteomics Protocols Handbook, ed. J. M. Walker, Humana Press, New York, 2005.

    Google Scholar 

  58. E. P. Kirby and R. F. Steiner, Influence of solvent and temperature upon the fluorescence of indole derivatives, J. Phys. Chem., 1970, 74, 4480–4490.

    Article  CAS  Google Scholar 

  59. A.-Z. Wu, C.-Z. Lin, Y.-J. Zhai, J.-L. Zhuo, C.-C. Zhu, Investigation of the interaction between two phenylethanoid glycosides and bovine serum albumin by spectroscopic methods, J. Pharm. Anal., 2013, 3, 61–65.

    Article  CAS  PubMed  Google Scholar 

  60. Z.-d. Qi, Y. Zhang, F.-l. Liao, Y.-w. Ou-Yang, Y. Liu and X. Yang, Probing the binding of morin to human serum albumin by optical spectroscopy, J. Pharm. Biomed. Anal., 2008, 46, 699–706.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. G. Coutinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, C.N.C., Hortelão, A.C.L., Ramos, J.M.F. et al. A new antitumoral Heteroarylaminothieno[3,2-b]pyridine derivative: its incorporation into liposomes and interaction with proteins monitored by fluorescence. Photochem Photobiol Sci 13, 1730–1740 (2014). https://doi.org/10.1039/c4pp00287c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00287c

Navigation