Skip to main content
Log in

α-Cyanostilbene-based Molecule with the Synergistical Mechanisms of AIE, ESIPT and TICT: A New Schiff Base Probe for Selective Detection of Fe3+ and Reversible Response to HCl/NH3 Vapor

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We designed and synthesized a new Schiff base probe, which incorporated the salicylaldehyde-analogue α-cyanostilbene and benzophenone hydrazone by the imine linkage. Its chemical structure was verified by FT-IR, MALDI-TOF-MS, HR-MS and 1H/13C NMR technologies. It could exhibit a red fluorescence based on the synergistical effects of aggregation-induce emission (AIE), excited-state intramolecular proton transfer (ESIPT) and twisted intramolecular charge-transfer (TICT) in the aggregation or solid states. Interestingly, the TLC-based test strip loaded with the target compound showed the reversible fluorescence response to amine/acid vapor and on-site visual fluorescence quenching response to Fe3+. In THF/water mixtures (fw = 90%, 10 µM, pH = 7.4), the detection limit (DL) and the binding constant (Ka) of the developed probe towards Fe3+ were evaluated as 5.50 × 10− 8 M and 1.69 × 105, respectively. The developed probe was successfully applied for the detection of Fe3+ with practical, reliable, and satisfying results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Sun Y, Jiang Y, Jiang J, Li T, Liu M (2024) Keto-form directed hierarchical chiral self-assembly of Schiff base derivatives with amplified circularly polarized luminescence. Chin Chem Lett 35:108409. https://doi.org/10.1016/j.cclet.2023.108409

    Article  CAS  Google Scholar 

  2. Ren L, He W, Wei M, Luo S, Yao D, Yang Z, Wang D, Cao H (2020) Schiff base derivative doped chiral nematic liquid crystals with a large wavelength shift driven by temperature and light. J Mater Chem C 8:561–566. https://doi.org/10.1039/C9TC04609G

    Article  CAS  Google Scholar 

  3. Du Z, Zhang F, Lin H, Guo W, Tian M, Yu K, Gao D, Qu F (2023) Thermal-response proton conduction in Schiff base-incorporated metal–organic framework hybrid membranes under low humidity based on the excited-state intramolecular proton transfer mechanism. ACS Appl Mater Interfaces 15:10064–10074. https://doi.org/10.1021/acsami.2c23170

    Article  CAS  Google Scholar 

  4. Xia YD, Cheng Y, Wu YJ, Xia Y, Yin XB (2023) Driving fluorescence by forming AIEgens in a hollow azine-linked covalent organic framework. Chem Mater 35:2579–2587. https://doi.org/10.1021/acs.chemmater.3c00043

    Article  CAS  Google Scholar 

  5. Xu Y, Sun T, Zeng T, Zhang X, Yao X, Liu S, Shi Z, Wen W, Zhao Y, Jiang S, Ma Y, Zhang YB (2023) Symmetry-breaking dynamics in a tauto-meric 3D covalent organic framework. Nat Commun 14:4215. https://doi.org/10.1038/s41467-023-39998-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu X, Qu L, Song J, Wu D, Zhou X, Xiang H (2019) A simple and visual approach for enantioselective recognition through supramolecular gels with specific selectivity. Chem Commun 55:9873–9876. https://doi.org/10.1039/C9CC04895B

    Article  CAS  Google Scholar 

  7. Liu T, Yin G, Song Z, Yu J, Yong X, Zhang B, Ai L, Lu S (2023) Solid-state luminescence in self-assembled chlorosalicylaldehyde-modified carbon dots. ACS Mater Lett 5:846–853. https://doi.org/10.1021/acsmaterialslett.2c01130

    Article  CAS  Google Scholar 

  8. Ai L, Song Z, Nie M, Yu J, Liu F, Song H, Zhang B, Waterhouse GIN, Lu S (2023) Solid-state fluorescence from carbon dots widely tunable from blue to deep red through surface ligand modulation. Angew Chem Int Ed 62:e202217822. https://doi.org/10.1002/anie.202217822

    Article  CAS  Google Scholar 

  9. Li JB, Zheng HW, Wu M, Liang QF, Yang DD, Zheng XJ (2021) Mechanochromic luminescence of four zn(II)/Cd(II) complexes based on same schiff-base ligand with different coordination mode. Cryst Growth Des 21:6937–6946. https://doi.org/10.1021/acs.cgd.1c00885

    Article  CAS  Google Scholar 

  10. Pasha SS, Yadav HR, Choudhury AR, Laskar IR (2017) Synthesis of an aggregation-induced emission (AIE) active salicylaldehyde based Schiff base: study of mechanoluminescence and sensitive zn(II) sensing. J Mater Chem C 5:9651–9658. https://doi.org/10.1039/C7TC03046K

    Article  CAS  Google Scholar 

  11. Yang X, Zhang W, Yi Z, Xu H, Wei J, Hao L (2017) Highly sensitive and selective fluorescent sensor for copper(II) based on salicylaldehyde Schiff-base derivatives with aggregation induced emission and mechanoluminescence. New J Chem 41:11079–11088. https://doi.org/10.1039/C7NJ01186E

    Article  CAS  Google Scholar 

  12. Borbone F, Tuzi A, Panunzi B, Piotto S, Concilio S, Shikler R, Nabha S, Centore R (2017) On–off mechano-responsive switching of ESIPT luminescence in polymorphic N-salicylidene-4-amino-2-methylbenzotriazole. Cryst Growth Des 17:5517–5523. https://doi.org/10.1021/acs.cgd.7b01047

    Article  CAS  Google Scholar 

  13. Sun H, Sun SS, Han FF, Ni ZH, Zhang R, Li MD (2019) A new tetraphenylethene-based Schiff base: two crystalline polymorphs exhibiting totally different photochromic and fluorescence properties. J Mater Chem C 7:7053–7060. https://doi.org/10.1039/C9TC01312A

    Article  CAS  Google Scholar 

  14. Huang A, Hu J, Han M, Wang K, Xia JL, Song J, Fu X, Chang K, Deng X, Liu S, Li Q, Li Z (2021) Tunable photocontrolled motions of anil-poly(ethylene terephthalate) systems through excited-state intramolecular proton transfer and trans–cis isomerization. Adv Mater 33:2005249. https://doi.org/10.1002/adma.202005249

    Article  CAS  Google Scholar 

  15. Cai X-M, Lin Y, Tang Z, Zhang X, Mu T, Huang S, Zhao Z, Tang BZ (2023) Filling the gap between molecular and aggregate states: how does molecular packing affect photophysical properties? Chem Eng J 451:138627. https://doi.org/10.1016/j.cej.2022.138627

    Article  CAS  Google Scholar 

  16. Zhu M, Huang S, Chen M, Li Y, Zhong M (2022) A novel Schiff’s base conjugate with multicolor changes in multiple states and its multipurpose applications for selective detection of Cu2+ in aggregated state and on silica gel strip. Opt Mater 127:112288. https://doi.org/10.1016/j.optmat.2022.112288

    Article  CAS  Google Scholar 

  17. Zhang X, Wu ST, Yang XJ, Shen LY, Huang YL, Xu H, Zhang QL, Sun T, Redshaw C, Feng X (2021) Dynamic coordination between a triphenylamine-functionalized salicylaldehyde Schiff base and a copper(II) ion. Inorg Chem 60:8581–8591. https://doi.org/10.1021/acs.inorgchem.1c00523

    Article  CAS  PubMed  Google Scholar 

  18. Zhu M, Zhong M, Chen M, Huang S, Li Y, Cao F (2022) A π-conjugated α-cyanostilbene dimer emitting strongly red fluorescence with a large Stokes’ shift of ca. 300 nm and used as a probe for selective detection of Cu2+. Opt Mater 125:112059. https://doi.org/10.1016/j.optmat.2022.112059

    Article  CAS  Google Scholar 

  19. Song T, Cao Y, Zhao G, Pu L (2017) Fluorescent recognition of Zn2+ by two diastereomeric salicylaldimines: dramatically different responses and spectroscopic investigation. Inorg Chem 56:4395–4399. https://doi.org/10.1021/acs.inorgchem.6b03062

    Article  CAS  PubMed  Google Scholar 

  20. Deng Q, Ding K, Li Y, Jiao Y, Hu R, Zhang T, Wang Z, Tang BZ (2022) Referential modification strategy based on phenolic hydroxyl-containing KSA luminogens for ER-targeting probe construction. Biomaterials 289:121767. https://doi.org/10.1016/j.biomaterials.2022.121767

    Article  CAS  PubMed  Google Scholar 

  21. Yeldir EK, Erdener D, Kaya İ (2022) Synthesis and characterization of a pyrene-based Schiff base and its oligomer: investigation of fluorescent Cr3+ probe. React Funct Polym 170:105097. https://doi.org/10.1016/j.reactfunctpolym.2021.105097

    Article  CAS  Google Scholar 

  22. Chen M, Huang W, Li Y, Chen Y, Ji D, Zhu M (2023) Preparation, AIE and ESIPT behaviour, controllable solid-state fluorescence and application of Co2+ probe based on α-cyanostilbene. Methods Appl Fluoresc 11:015002. https://doi.org/10.1088/2050-6120/aca378

    Article  CAS  Google Scholar 

  23. Wang J, Meng Q, Yang Y, Zhong S, Zhang R, Fang Y, Gao Y, Cui X (2022) Schiff base aggregation-induced emission luminogens for sensing applications: a review. ACS Sens 7:2521–2536. https://doi.org/10.1021/acssensors.2c01550

    Article  CAS  PubMed  Google Scholar 

  24. Kauno JG, Zhao Y, Feng J, Wang T, Chen Y, Xie H, Xue S, Guo Y (2022) Coordination polymerization-induced emission based on a salicylaldehyde hydrazone AIEgen toward Zn2+ detection. Cryst Growth Des 22:6564–6574. https://doi.org/10.1021/acs.cgd.2c00785

    Article  CAS  Google Scholar 

  25. Chen M, Zhong M, Huang S, Chen Y, Cao F, Hu H, Huang W, Ji D, Zhu M (2023) α-Cyanostilbene-based sensor with AIE and ESIPT features emitting long-wavelength intense red-fluorescence for highly selective and sensitive detection of Cu2+. Inorg Chem Commun 152:110640. https://doi.org/10.1016/j.inoche.2023.110640

    Article  CAS  Google Scholar 

  26. Chen M, Chen Y, Zhong M, Xie D, Wang C, Ren X, Huang S, Xu J, Zhu M (2023) The synergistic mechanisms of AIE, ESIPT and ICT in the α–cyanostilbene–based derivative: a red–fluorescence probe with a large Stokes’ shift for copper (II) ion determination and reversible response to amine/acid vapor. J Fluoresc. https://doi.org/10.1007/s10895-023-03341-w

    Article  PubMed  Google Scholar 

  27. Kan C, Song F, Shao X, Wu L, Zhu J (2020) Fe(III) induced fluorescent probe based on triamine and rhodamine derivatives and its applications in biological imaging. J Photochem Photobiol A Chem 390:112306. https://doi.org/10.1016/j.jphotochem.2019.112306

    Article  CAS  Google Scholar 

  28. Qiu J, Zhong C, Liu M, Yuan Y, Zhu H, Gao Y (2021) Rational design and bioimaging application of water-soluble Fe3+ fluorescent probes. New J Chem 45:5184–5194. https://doi.org/10.1039/D0NJ06253G

    Article  CAS  Google Scholar 

  29. Gao Z, Kan C, Liu H, Zhu J, Bao X (2019) A highly sensitive and selective fluorescent probe for Fe3+ containing two rhodamine B and thiocarbonyl moieties and its application to live cell imaging. Tetrahedron 75:1223–1230. https://doi.org/10.1016/j.tet.2019.01.029

    Article  CAS  Google Scholar 

  30. Prasad GD, Niranjan R, Arockiaraj M, Rajeshkumar V, Mahadevegowda SH (2024) Synthesis of di(thiophen-2-yl) substituted pyrene-pyridine conjugated scaffold and DFT insights: a selective and sensitive colorimetric, and ratiometric fluorescent sensor for Fe(III) ions. J Fluoresc. https://doi.org/10.1007/s10895-023-03554-z

    Article  PubMed  Google Scholar 

  31. Sui B, Tang S, Liu T, Kim B, Belfield KD (2014) Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells. ACS Appl Mater Interfaces 6:18408–18412. https://doi.org/10.1021/am506262u

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Pan W, Zheng C, Pu S (2020) A diarylethene derived Fe3+ fluorescent chemosensor and its application in wastewater analysis. J Photochem Photobiol A Chem 389:112282. https://doi.org/10.1016/j.jphotochem.2019.112282

    Article  CAS  Google Scholar 

  33. David CI, Prabakaran G, Karuppasamy A, Veetil JC, Kumar RS, Almansour AI, Perumal K, Ramalingan C, Nandhakumar R (2022) A single carbazole based Chemosensor for multiple targets: sensing of Fe3+ and arginine by fluorimetry and its applications. J Photochem Photobiol A Chem 425:113693. https://doi.org/10.1016/j.jphotochem.2021.113693

    Article  CAS  Google Scholar 

  34. Gong X, Ding X, Jiang N, Zhong T, Wang G (2020) Benzothiazole-based fluorescence chemosensors for rapid recognition and turn-off fluorescence detection of Fe3+ ions in aqueous solution and in living cells. Microchem J 152:104351. https://doi.org/10.1016/j.microc.2019.104351

    Article  CAS  Google Scholar 

  35. Ahmadi S, Dabbagh HA, Grieco P, Balalaie S (2020) A cystine-based dual chemosensor for fluorescent-colorimetric detection of CN and fluorescent detection of Fe3+ in aqueous media: synthesis, spectroscopic, and DFT studies. Spectrochim Acta A Mol Biomol Spectrosc 228:117696. https://doi.org/10.1016/j.saa.2019.117696

    Article  CAS  PubMed  Google Scholar 

  36. Pivetta T, Masuri S, Cabiddu MG, Caltagirone C, Pintus A, Massa M, Isaia F, Cadoni E (2019) A novel ratiometric and turn-on fluorescent coumarin-based probe for Fe(iii). New J Chem 43:12032–12041. https://doi.org/10.1039/C9NJ02044F

    Article  CAS  Google Scholar 

  37. Danish K, Shaily (2023) Coumarin-based fluorescent sensors. Appl Organomet Chem 37:e7138. https://doi.org/10.1002/aoc.7138

    Article  CAS  Google Scholar 

  38. Nandre J, Patil S, Patil V, Yu F, Chen L, Sahoo S, Prior T, Redshaw C, Mahulikar P, Patil U (2014) A novel fluorescent turn-on chemosensor for nanomolar detection of Fe(III) from aqueous solution and its application in living cells imaging. Biosens Bioelectron 61:612–617. https://doi.org/10.1016/j.bios.2014.06.017

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Liu Q, Wang X, Xie Y, Wang Y (2023) Advanced naphthalimide-based supramolecular fluorescent self-assembly approach for Fe3+ detection and applications. Dyes Pigm 219:111576. https://doi.org/10.1016/j.dyepig.2023.111576

    Article  CAS  Google Scholar 

  40. Dwivedi SK, Ali R, Singh M, Gupta T, Kar AK, Prakash V, Sadasivam A, Patnaik S, Misra A (2020) A simple naphthalimide based PET probe for Fe3+ and selective detection of pyrophosphate through displacement approach: cell imaging studies and logic interpretation. J Photochem Photobiol A Chem 403:112854. https://doi.org/10.1016/j.jphotochem.2020.112854

    Article  CAS  Google Scholar 

  41. Nirma M, Ashok KS (2017) Selective naked eye and turn-on fluorescence chemodosimeter for CN by activated Michael acceptor possessing different polar substituents: reduced ICT-based signal transduction. Actuators B Chem 245:74–80. https://doi.org/10.1016/j.snb.2017.01.121

    Article  CAS  Google Scholar 

  42. Zhang R, Hu L, Xu Z, Song Y, Li H, Zhang X, Gao X, Wang M, Xian C (2019) A highly selective probe for fluorescence turn-on detection of Fe3+ ion based on a novel spiropyran derivative. J Mol Struct 1204:127481. https://doi.org/10.1016/j.molstruc.2019.127481

    Article  CAS  Google Scholar 

  43. Nirma M, Ashok KS (2020) A chromogenic and fluorogenic chemodosimeter for selective detection of CN. Inorg Chim Acta 499:119156. https://doi.org/10.1016/j.ica.2019.119156

    Article  CAS  Google Scholar 

  44. Geng Y, Chen L, Wan Q, Lian C, Han Y, Wang Y, Zhang C, Huang L, Zhao H, Sun X, He H (2021) A novel [1,2,4]triazolo[1,5-a]pyrimidine derivative as a fluorescence probe for specific detection of Fe3+ ions and application in cell imaging. Anal Chim Acta 1187:339168. https://doi.org/10.1016/j.aca.2021.339168

    Article  CAS  PubMed  Google Scholar 

  45. Shubhrajyotsna B, Nirma M, Ashok KS (2018) Chromone based fluorescent organic nanoparticles for high-precision in-situ sensing of Cu2+ and CN ions in 100% aqueous solutions. Sens Actuators B Chem 260:753–762. https://doi.org/10.1016/j.snb.2018.01.003

    Article  CAS  Google Scholar 

  46. Kumar Y, Singh NK, Mukhopadhyay S, Pandey DS (2023) AIE active quinazoline based probes for selective detection of Fe3+ and acidochromism. Inorg Chim Acta 546:121294. https://doi.org/10.1016/j.ica.2022.121294

    Article  CAS  Google Scholar 

  47. Zhang W, Luo Y, Zhao J, Lin WH, Ni XL, Tao Z, Xiao X, Xiao CD (2022) tQ[14]-based AIE supramolecular network polymers as potential bioimaging agents for the detection of Fe3+ in live HeLa cells. Sens Actuators B Chem 354:131189. https://doi.org/10.1016/j.snb.2021.131189

    Article  CAS  Google Scholar 

  48. Hussain S, Junaid HM, Waseem MT, Rauf W, Shaikh AJ, Shahzad SA (2022) Aggregation-induced emission of quinoline based fluorescent and colorimetric sensors for rapid detection of Fe3+ and 4-nitrophenol in aqueous medium. Spectrochim Acta A Mol Biomol Spectrosc 272:121021. https://doi.org/10.1016/j.saa.2022.121021

    Article  CAS  PubMed  Google Scholar 

  49. Pan C, Wang K, Ji S, Wang H, Li Z, He H, Huo Y (2017) Schiff base derived Fe3+-selective fluorescence turn-off chemsensors based on triphenylamine and indole: synthesis, properties and application in living cells. RSC Adv 7:36007–36014. https://doi.org/10.1039/C7RA05064J

    Article  CAS  Google Scholar 

  50. Feng X, Li Y, He X, Liu H, Zhao Z, Kwok RTK, Elsegood MRJ, Lam JWY, Tang BZ (2018) A substitution-dependent light-up fluorescence probe for selectively detecting Fe3+ ions and its cell imaging application. Adv Funct Mater 28:1802833. https://doi.org/10.1002/adfm.201802833

    Article  CAS  Google Scholar 

  51. Wang H, Tu Q, Zheng Y, Yan J, Huang X, Meng H, Tan C (2022) A novel optical fiber sensor based on AIEgens for highly selective and sensitive detection of Fe3+. Dyes Pigm 203:110304. https://doi.org/10.1016/j.dyepig.2022.110304

    Article  CAS  Google Scholar 

  52. Xiong L, Zheng Y, Wang H, Yan J, Huang X, Meng H, Tan C (2022) A novel AIEE active anti-B18H22 derivative-based Cu2+ and Fe3+ fluorescence off-on-off sensor. Methods Appl Fluoresc 10:035004. https://doi.org/10.1088/2050-6120/ac6b88

    Article  CAS  Google Scholar 

  53. Mahalingavelar P, Kanvah S (2022) α-Cyanostilbene: a multifunctional spectral engineering motif. Phys Chem Chem Phys 24:23049–23075. https://doi.org/10.1039/D2CP02686D

    Article  CAS  PubMed  Google Scholar 

  54. Nehra N, Kaushik R (2023) ESIPT-based probes for cations, anions and neutral species: recent progress, multidisciplinary applications and future perspectives. Anal Methods 15:5268–5285. https://doi.org/10.1039/D3AY01249B

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Scientific Research Program in Neijiang Normal University (No. X20B0047), the Undergraduate Innovation Program in Neijiang Normal University (No. X2022054).

Funding

The study was supported by the Scientific Research Program in Neijiang Normal University (No. X20B0047), the Undergraduate Innovation Program in Neijiang Normal University (No. X2022054).

Author information

Authors and Affiliations

Authors

Contributions

Meihui Chen: Conceptualization, Investigation, Writing-original draft. Wenrong Chen: Investigation. Qing Zhu: Investigation. Liping Yang: Investigation. Xiazhong Zhang: Investigation. Donghong Xie: Investigation. Jianqiang Chen: Investigation. Yuanbin Wu: Investigation. Yuping Zhu: Investigation. Mingguang Zhu: Conceptualization, Methodology, Writing-original draft, Writing-review & editing.

Corresponding authors

Correspondence to Jianqiang Chen or Mingguang Zhu.

Ethics declarations

Ethics Approval

There is no ethic approval required for this research work.

Consent to Participate

Not applicable.

Consent for Publication

All authors agree for the publication.

Conflicts of Interest/Competing Interests

No potential conflict of interest is reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Chen, W., Zhu, Q. et al. α-Cyanostilbene-based Molecule with the Synergistical Mechanisms of AIE, ESIPT and TICT: A New Schiff Base Probe for Selective Detection of Fe3+ and Reversible Response to HCl/NH3 Vapor. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03609-9

Keywords

Navigation