Skip to main content
Log in

Rhod-5N as a Fluorescent Molecular Sensor of Cadmium(II) Ion

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The photophysical and complexing properties of Rhod-5N (commercially available) in MOPS buffer are reported. This fluorescent molecular sensor consists of a BAPTA chelating moiety bound to a rhodamine fluorophore. Its fluorescence quantum yield is low and a drastic enhancement of fluorescence intensity upon cation binding was observed. Special attention was paid to the complexation with Cd2+, a well known toxic metal ion. Possible interference with other metal ions (Na+, K+, Mg2+, Ca2+, Zn2+, Pb2+) was examined. Rhod-5N was found to be highly selective of Cd2+ over those interfering cations except Pb2+. The limit of detection is 3.1 μg l−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dobson S (1992) Cadmium-environmental aspects. World Health Organization, Geneva

    Google Scholar 

  2. World Health Organization (2004) Guidelines for drinking water quality, 3rd edition. 1, 491

  3. Valeur B (1994) Principles of fluorescent probe design for ion recognition. In: Lakowicz JR (ed) Probe design and chemical sensing, topics in fluorescence spectroscopy, vol. 4. Plenum, New York, pp 21–48

    Google Scholar 

  4. Desvergne J-P, Czarnik AW (Eds) (1997) Chemosensors of Ion and Molecular Recognition, NATO ASI Series. Kluwer Academic, Dordrecht, vol. C492

  5. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Coord Chem Rev 97:1515–1566

    Google Scholar 

  6. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  7. Valeur B (2002) Molecular fluorescence. Principles and applications. Wiley-VCH, Weinheim (chap. 10)

    Google Scholar 

  8. Fluorescent sensors, special issue of the Journal of Materials Science, vol. 15 (2005), Guest editors: A. P. de Silva and P. Tecilla

  9. Hefley AJ, Jaselskis B (1974) Fluorometric determination of submicrogram quantities of cadmium by reaction with the metallofluorochromic reagent, calcein. Anal Chem 46:2036–2038

    Article  CAS  Google Scholar 

  10. Charles S, Dubois F, Yunus S, Vander Donckt E (2000) Determination by fluorescence spectroscopy of cadmium at the subnanomolar level: application to seawater. J Fluorescence 10:99–105

    Article  CAS  Google Scholar 

  11. Luo HY, Jiang JH, Zhang XB, Li CY, Shen GL, Yu RQ (2007) Synthesis of porphyrin-appended terpyridine as a chemosensor for cadmium based on fluorescent enhancement. Talanta 72:575–581

    Article  CAS  PubMed  Google Scholar 

  12. Hennrich G, Sonnenschein H, Resch-Genger U (1999) Redox switchable fluorescent probe selective for either Hg(II) or Cd(II) and Zn(II). J Am Chem Soc 121:5073–5074

    Article  CAS  Google Scholar 

  13. Gunnlaugsson T, Lee TC, Parkesh R (1999) Cd(II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors. Org Lett 121:2158–4068

    Google Scholar 

  14. Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 1298:1500–1501

    Article  CAS  Google Scholar 

  15. Lu C, Xu Z, Cui J (2007) Ratiometric and highly selective fluorescent sensor for cadmium under physiological pH range: a new strategy to discriminate cadmium from zinc. J Org Chem 72:3554–3557

    Article  PubMed  CAS  Google Scholar 

  16. Bronson RT, Michaelis DJ, Lamb RD, Husseini GA, Farnsworth PB, Linford MR, Izatt RM, Bradshaw JS, Savage PB (2005) Efficient immobilization of a cadmium chemosensor in a thin film: generation of a cadmium sensor prototype. Org Lett 7:1105–1108

    Article  PubMed  CAS  Google Scholar 

  17. Gunnlaugsson T, Lee TC, Parkesh R (2003) Cd(II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors. Org Lett 5:4065–4068

    Article  PubMed  CAS  Google Scholar 

  18. Costero AM, Andreu R, Monrab E, Martinez-Manez R, Sancenon F, Soto J (2002) 4,4¢-Bis(dimethylamino)biphenyl containing binding sites. A new fluorescent subunit for cation sensing.. J Chem Soc Dalton Trans 8:1769–1775

    Article  CAS  Google Scholar 

  19. Choi M, Kim M, Lee KD, Han KN, Yoon IA, Chung HJ, Yoon J (2001) A new reverse PET chemosensor and its chelatoselective aromatic cadmiation. Org Lett 3:3455–3457

    Article  PubMed  CAS  Google Scholar 

  20. Prodi L, Bolletta F, Montalti M, Zaccheroni N (1999) Searching for new luminescent sensors. Synthesis and photophysical properties of a tripodal ligand incorporating the dansyl chromophore and of its metal complexes. Eur J Inorg Chem 3:455–460

    Article  Google Scholar 

  21. Huston ME, Engleman C, Czarnik AW (1990) Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation. J Am Chem Soc 112:7054–7056

    Article  CAS  Google Scholar 

  22. Akkaya EU, Huston ME, Czarnik AW (1990) Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. J Am Chem Soc 112:3590–3593

    Article  CAS  Google Scholar 

  23. Haugland RP (2005) The handbook: a guide to fluorescent probes and labelling techniques, chap. 19, 10th edn. Invitrogen, USA

    Google Scholar 

  24. Boens N, Qin W, Basaric N, Hofkens J, Ameloot M, Pouget J, Lefevre JP, Valeur B, Gratton E, vandeVen M, Silva Jr ND, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, Visser AJWG, van Hoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149

    Article  PubMed  CAS  Google Scholar 

  25. Gampp H, Maeder M, Meyer CJ, Zuberbühler AD (1985) Calculation of equilibrium constants from multiwavelength spectroscopic data—I: Mathematical considerations. Talanta 32:95–101

    Article  PubMed  CAS  Google Scholar 

  26. Plaza P, Dai Hung N, Martin MM, Meyer YH, Vogel M, Rettig W (1992) Ultrafast internal charge transfer in a donor-modified rhodamine. Chem Phys 168:365–373

    Article  CAS  Google Scholar 

  27. McNamara CJ, Perry TD IV, Bearce K, Hernandez-Duque G, Mitchell R (2005) Measurement of limestone biodeterioration using the Ca2+ binding fluorochrome Rhod-5N. J Microbiol Methods 61:245–250

    Article  PubMed  CAS  Google Scholar 

  28. Zhao X, Yoshida M, Brotto L, Takeshima H, Weisleder N, Hirata Y, Nosek TM, Ma J, Brotto M (2005) Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol Genomics 23:72–78

    Article  PubMed  CAS  Google Scholar 

  29. Ribou AC, Salmon JM, Vigo J, Goyet C (2007) Measurements of calcium with a fluorescent probe Rhod-5N: Influence of high ionic strength and pH. Talanta 71:437–442

    Article  CAS  PubMed  Google Scholar 

  30. Phung-Nguyen AT, Hernando V, Rieutord A, Brion F, Prognon P (2006) Are fluorescent calcium probes useful for studying amino acid-cation interactions in total nutritional admixtures? Luminescence 21:356–357

    Google Scholar 

  31. Rand MD, Lindblom A, Carlson J, Villoutreix BO, Stenflo J (1997) Calcium binding to tandem repeats of EGF-like modules. Expression and characterization of the EGF-like module of human Notch-1 implicated in receptor-ligand interactions.. Protein Science 6:2059–2071

    Article  PubMed  CAS  Google Scholar 

  32. Schoutteten L, Denjean P, Faure J, Pansu RB (1999) Photophysics of Calcium Green 1 in vitro and in live cells. Phys Chem Chem Phys 1:2463–2469

    Article  CAS  Google Scholar 

  33. Tessier A, Méallet-Renault R, Denjean P, Miller D, Pansu RB (1999) Conformational dynamics of Calcium Green 1 by fluorescence correlation spectroscopy. Phys Chem Chem Phys 1:5767–5769

    Article  CAS  Google Scholar 

  34. Gaillard S, Yakolev A, Luccardini C, Oheim M, Feltz A, Mallet JM (2007) Synthesis and characterization of a red-emitting Ca2+ indicator, calcium ruby. Org Lett 9:2629–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Valeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soibinet, M., Souchon, V., Leray, I. et al. Rhod-5N as a Fluorescent Molecular Sensor of Cadmium(II) Ion. J Fluoresc 18, 1077–1082 (2008). https://doi.org/10.1007/s10895-008-0352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0352-z

Keywords

Navigation