Skip to main content
Log in

A Novel Cr3+ Fluorescence Turn-On Probe Based on Rhodamine and Isatin Framework

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel turn-on fluorescent dye (E)-3′,6′-bis(diethylamino)-2-((1-(naphthalen-2-ylmethyl)-2-oxoindolin-3-ylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one (RBNI) based on a rhodamine-isatin hybrid molecular architecture was synthesized by condensation of isatin derivative with rhodamine hydrazide. The dye RBNI is selective and sensitive for recognition of Cr3+ ion in aqueous CH3CN media over other tested metal ions. The sensor shows large fluorescence enhancement upon complexation with Cr3+ and simultaneous color change occurs from colorless to pink-red. Spectroscopic study predicted 1:1 binding stoichiometry between RBNI and Cr3+ ion and this was again verified through ESI-MS (Electrospray Ionisation Mass Spectrometry). Detection limit of Cr3+ ion by this dye was calculated to be 2.4 μM. Furthermore, the potential application of this dye for the monitoring of Cr3+ ions in pond water and tap water samples was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Manez RM, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  Google Scholar 

  2. Czarnik AW (1994) Chemical communication in water using fluorescent chemosensors. Acc Chem Res 27:302–308

    Article  CAS  Google Scholar 

  3. Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107:3780–3799

    Article  CAS  PubMed  Google Scholar 

  4. Sinkeldam RW, Greco NJ, Tor Y (2010) Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 110:2579–2619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Czarnik AW (1992) Fluorescent chemosensors for ion and molecule recognition. Ed. American Chemical Society, Washington, DC

  6. Numata M, Li C, Bae AH, Kaneko K, Sakurai K, Shinkai S (2005) β-1,3-Glucan polysaccharide can act as a one-dimensional host to create novel silica nanofiber structures. Chem Comm 4655–4657

  7. Henry A (1968) The role of chromium in mammalian nutrition. J Nutr 21:230–244

    Google Scholar 

  8. Gómez V, Callao MP (2006) Chromium determination and speciation since 2000 trends. Anal Chem 25:1006–1015

    Google Scholar 

  9. Latva S, Jokiniemi J, Peraniemi S, Ahlgren M (2003) Separation of picogram quantities of Cr(III) and Cr(VI) species in aqueous solutions and determination by graphite furnace atomic absorption spectrometry. J Anal At Spectrom 18:84–86

    Article  CAS  Google Scholar 

  10. Arakawa H, Ahmad R, Naoui M, TaJmir-Riahi HA (2000) A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions evidence for the guanine N-7-chromium-phosphate chelate formation. J Biol Chem 275:10150–10153

    Article  CAS  PubMed  Google Scholar 

  11. Li Z, Zhao W, Zhang Y, Zhang L, Yu M, Liu J, Zhang H (2011) An ‘off-on’ fluorescent chemosensor of selectivity to Cr3+ and its application to MCF-7 cells. Tetrahedron 67:7096–7100

    Article  CAS  Google Scholar 

  12. Vincent JB (2000) Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Rev 58:67–72

    Article  CAS  PubMed  Google Scholar 

  13. Bencheikh-Latmani R, Obraztsova A, Mackey MR, Ellisman MH, Tebo BM (2006) Toxicity of Cr(III) to Shewanella sp. strain MR-4 during Cr(VI) reduction. Environ Sci Technol 41:214–220

    Article  Google Scholar 

  14. Mahmoud ME, Yakout AA, Ahmed SB, Osman MM (2008) Development of a method for chromium speciation by selective solid phase extraction and preconcentration on alumina-functionalized thiosemicarbazide. J Liq Chromatogr Relat Technol 31:2475–2492

    Article  CAS  Google Scholar 

  15. (1989) National research council, recommended dietary allowance, Tenth Edition. National Academy Press, Washington, D. C.

  16. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. CRC Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  17. Dai R, Yu C, Liu J, Lan Y, Deng B (2010) Photo-oxidation of Cr(III)-citrate complexes forms harmful Cr(VI). Environ Sci Technol 44:6959–6964

    Article  CAS  PubMed  Google Scholar 

  18. O’Brien T, Mandel HG, Pritchard DE, Patierno SR (2002) Critical role of chromium (Cr)-DNA interactions in the formation of Cr-induced polymerase arresting lesions. Biochemistry 41:12529–12537

    Article  PubMed  Google Scholar 

  19. Arar EJ, Paff JO (1991) Determination of dissolved hexavalent chromium in industrial wastewater effluents by ion chromatography and post-column derivatization with diphenylcarbazide. J Chromatogr 546:335–340

    Article  CAS  PubMed  Google Scholar 

  20. Ososkov V, Kebbekus B, Chesbro D (1996) Field determination of Cr(VI) in water at low ppb level. Anal Lett 29:1829–1850

    Article  CAS  Google Scholar 

  21. Varnes AW, Dodson RB, Wehry EL (1972) Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies. J Am Chem Soc 94:946–950

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Zhang J, Zhang L, Zhang Q, Ma T, Niu J (2013) A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes Pigments 97:148–154

    Article  CAS  Google Scholar 

  23. Wan Y, Guo Q, Wang X, Xia A (2010) Photophysical properties of rhodamine isomers: a two-photon excited fluorescent sensor for trivalent chromium cation (Cr3+). Anal Chim Acta 665:215–220

    Article  CAS  PubMed  Google Scholar 

  24. Huang K, Yang H, Zhou Z, Yu M, Li F, Gao X, Yi T, Huang C (2008) Multisignal chemosensor for Cr3+ and its application in bioimaging. Org Lett 10:2557–2560

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Z, Yu M, Yang H, Huang K, Li F, Yi T, Huang C (2008) FRET-based sensor for imaging chromium(III) in living cells. Chem Commun 3387–3389

  26. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A Selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122:968–969

    Article  CAS  Google Scholar 

  27. Resendiz MJE, Noveron JC, Disteldorf H, Fischer S, Stang PJ (2004) A self-assembled supramolecular optical sensor for Ni(II), Cd(II), and Cr(III). Org Lett 6:651–653

    Article  CAS  PubMed  Google Scholar 

  28. Zyryanov GV, Palacios MA, Anzenbacher P (2007) Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew Chem Int Ed 46:7849

    Article  CAS  Google Scholar 

  29. Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D (2007) A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J Am Chem Soc 129:10322–10323

    Article  CAS  PubMed  Google Scholar 

  30. Kim H, Lee M, Kim H, Kim J, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Wan X, Liu T, Li Y, Yao Y (2014) Cascade sensitive and selective fluorescence OFF-ON-OFF sensor for Cr3+ cation and F anion. Sensors Actuators B 200:191–197

    Article  CAS  Google Scholar 

  32. King CIM, Bergh JJ, Petzer JP (2011) Inhibition of monoamine oxidase by selected C5- and C6-substituted isatin analogues. Bioorg Med Chem 19:261–274

    Article  Google Scholar 

  33. Jiang Y, Hansen TV (2011) isatin 1,2,3-triazoles as potent inhibitors against caspase-3. Bioorg Med Chem Lett 21:1626–1629

    Article  CAS  PubMed  Google Scholar 

  34. Burdette SC, Lippard SJ (2001) ICCC34—golden edition of coordination chemistry reviews. Coordination chemistry for the neurosciences. Coord Chem Rev 216:333–361

    Article  Google Scholar 

  35. Prodi L (2005) Luminescent chemosensors: from molecules to nanoparticles. New J Chem 29:20–31

    Article  CAS  Google Scholar 

  36. Dhara A, Jana A, Konar S, Ghatak SK, Ray S, Das K, Bandyopadhyay A, Guchhait N, Kar SK (2013) A novel rhodamine-based colorimetric chemodosimeter for the rapid detection of Al3+ in aqueous methanol: fluorescent ‘OFF–ON’ mechanism. Tetrahedron Lett 54:3630–3634

    Article  CAS  Google Scholar 

  37. Dhara A, Jana A, Guchhait N, Ghosh P, Kar SK (2014) Rhodamine-based molecular clips for highly selective recognition of Al3+ ions: synthesis, crystal structure and spectroscopic properties. New J Chem 38:1627–1634

    Article  CAS  Google Scholar 

  38. Dhara A, Jana A, Guchhait N, Kar SK (2014) Isatin appended rhodamine scaffold as an efficient chemical tool to detect selectively Al3+. J Lumin 154:369–375

    Article  CAS  Google Scholar 

  39. Anthoni U, Christophersen C, Nielsen P, Puschl A, Schaumburg K (1995) structure of red and orange fluorescein. Struct Chem 3:161–165

    Article  Google Scholar 

  40. Xiang Y, Tong A, Jin P, Ju Y (2006) New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett 8:2863–2866

    Article  CAS  PubMed  Google Scholar 

  41. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, New York

    Book  Google Scholar 

  42. Kubin RF, Fletcher AN (1952) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462

    Article  Google Scholar 

  43. Bhattacharya B, Nakka S, Guruprasad L, Samanta A (2009) Interaction of bovine serum albumin with dipolar molecules: fluorescence and molecular docking studies. J Phys Chem B 113:2143–2150

    Article  CAS  PubMed  Google Scholar 

  44. Teuchner K, Pfarrherr A, Stiel H, Freyera W, Leupold D (1993) Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via two-step excited electronic states. Photochem Photobiol 57:465–471

    Article  CAS  PubMed  Google Scholar 

  45. Stiel H, Teuchner K, Paul A, Freyer W, Leupold DJ (1994) Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states. Photochem Photobiol A 80:289–298

    Article  CAS  Google Scholar 

  46. Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55:712A–724A

    Article  CAS  Google Scholar 

  47. Kaur M, Kaur P, Dhuna V, Singh S, Singh K (2013) A ferrocene-pyrene based ‘turn-on’ chemodosimeter for Cr3+ - application in bioimaging. Dalton Trans 43:5707–5712

    Article  Google Scholar 

  48. Wu S, Zhang K, Wang Y, Mao D, Liu X, Yu J, Wang L (2014) A novel Cr3+ turn-on probe based on naphthalimide and binol framework. Tetrahedron Lett 55:351–353

    Article  CAS  Google Scholar 

  49. EPA US (1999) Integrated Risk Information System (IRIS) on chromium III. National Center for Environmental Assessment. Office of Research and Development, Washington

    Google Scholar 

  50. Vosburgh WC, Copper GR (1941) The identification of complex ions in solution by spectrophotometric measurements. J Am Chem Soc 63:437–442

    Article  CAS  Google Scholar 

  51. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.D. thanks to CSIR, New Delhi, India for financial support by awarding senior research fellowship (Sanc. No. 01(2401)/10/EMR-II, dated 05.01. 2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikhil Guchhait or Susanta K. Kar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, A., Guchhait, N. & Kar, S.K. A Novel Cr3+ Fluorescence Turn-On Probe Based on Rhodamine and Isatin Framework. J Fluoresc 25, 1921–1929 (2015). https://doi.org/10.1007/s10895-015-1684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1684-0

Keywords

Navigation