Skip to main content
Log in

On Mechanism of Intermediate-Sized Circular DNA Compaction Mediated by Spermine: Contribution of Fluorescence Lifetime Correlation Spectroscopy

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The compaction of DNA plays a role in the nuclei of several types of cells and becomes important in the non-viral gene therapy. Thus, it is in the scope of research interest. It was shown, that spermine-induced compaction of large DNA molecules occurs in a discrete “all-or-non” regime, where the coexistence of free and folded DNA molecules was observed. In the case of intermediate-sized DNA molecules (~10 kbp), so far, it was stated that the mechanism of folding is continuous. Here, we show, that neither a standard benchmark technique—dynamic light scattering, nor a single molecule technique such as fluorescence correlation spectroscopy, can decide what kind of mechanism is undertaken in the compaction process. Besides, we introduce an application of a new approach—fluorescence lifetime correlation spectroscopy. The method takes an advantage of a subtle lifetime change of an intercalating dye PicoGreen® during the titration with spermine and based on that, it reveals the discrete mechanism of the process. Furthermore, we show that it allows for observation of the equilibrium state transition dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bloomfield VA (1996) Curr Opin Struct Biol 6(3):334–341

    Article  PubMed  CAS  Google Scholar 

  2. Zinchenko AA, Baigl D, Yoshikawa K (2007) In: Nalwa HS (ed) Polymeric Nanostructures and their Applications. American Scientific Publishers, Valencia

  3. Yu JQ, Wang ZL, Chu B (1992) Macromolecules 25(5):1618–1620

    Article  CAS  Google Scholar 

  4. Nierlich M, Cotton JP, Farnoux B (1978) J Chem Phys 69(4):1379–1383

    Article  CAS  Google Scholar 

  5. Sun ST, Nishio I, Swislow G, Tanaka T (1980) J Chem Phys 73(12):5971–5975

    Article  CAS  Google Scholar 

  6. Yoshikawa K, Takahashi M, Vasilevskaya VV, Khokhlov AR (1996) Phys Rev Lett 76(16):3029–3031

    Article  PubMed  CAS  Google Scholar 

  7. Yoshikawa K, Matsuzawa Y (1996) J Am Chem Soc 118(4):929–930

    Article  CAS  Google Scholar 

  8. Yoshikawa K, Yoshikawa Y, Koyama Y, Kanbe T (1997) J Am Chem Soc 119(28):6473–6477

    Article  CAS  Google Scholar 

  9. Yoshikawa Y, Velichko YS, Ichiba Y, Yoshikawa K (2001) Eur J Biochem 268(9):2593–2599

    Article  PubMed  CAS  Google Scholar 

  10. Zinchenko AA, Sergeyev VG, Murata S, Yoshikawa K (2003) J Am Chem Soc 125(15):4414–4415

    Article  PubMed  CAS  Google Scholar 

  11. Chen N, Zinchenko AA, Murata S, Yoshikawa K (2005) J Am Chem Soc 127(31):10910–10916

    Article  PubMed  CAS  Google Scholar 

  12. Kiriy A, Gorodyska G, Minko S, Jaeger W, Stepanek P, Stamm M (2002) J Am Chem Soc 124(45):13454–13462

    Article  PubMed  CAS  Google Scholar 

  13. Yoshikawa Y, Suzuki M, Chen N, Zinchenko AA, Murata S, Kanbe T, Nakai T, Oana H, Yoshikawa K (2003) Eur J Biochem 270(14):3101–3106

    Article  PubMed  CAS  Google Scholar 

  14. Makita N, Yoshikawa K (2002) Biophys Chem 99(1):43–53

    Article  PubMed  CAS  Google Scholar 

  15. Satoa YT, Hamada T, Kubo K, Yamada A, Kishida T, Mazda O, Yoshikawa K (2005) FEBS Lett 579(14):3095–3099

    Article  CAS  Google Scholar 

  16. Thompson NL, Lieto AM, Allen NW (2002) Curr Opin Struct Biol 12(5):634–641

    Article  PubMed  Google Scholar 

  17. Kral T, Langner M, Benes M, Baczynska D, Ugorski M, Hof M (2002) Biophys Chem 95(2):135–144

    Article  PubMed  CAS  Google Scholar 

  18. Kral T, Widerak K, Langner M, Hof M (2005) J Fluoresc 15(2):179–183

    Article  PubMed  CAS  Google Scholar 

  19. Kral T, Langner M, Hof M (2006) Chemotherapy 52(4):196–199

    Article  PubMed  CAS  Google Scholar 

  20. Kapusta P, Wahl M, Benda A, Hof M, Enderlein J (2007) J Fluoresc 17(1):43–48

    Article  PubMed  CAS  Google Scholar 

  21. Bohmer M, Wahl M, Rahn HJ, Erdmann R, Enderlein J (2002) Chem Phys Lett 353(5–6):439–445

    Article  CAS  Google Scholar 

  22. Benda A, Hof M, Wahl M, Patting M, Erdmann R, Kapusta P (2005) Rev Sci Instrum 76(3):033106

    Article  CAS  Google Scholar 

  23. Benda A, Fagul'ova V, Deyneka A, Enderlein J, Hof M (2006) Langmuir 22(23):9580–9585

    Article  PubMed  CAS  Google Scholar 

  24. Gregor I, Enderlein J (2007) Photochem Photobiol Sci 6(1):13–18

    Article  PubMed  CAS  Google Scholar 

  25. Schwille P, MeyerAlmes FJ, Rigler R (1997) Biophys J 72(4):1878–1886

    PubMed  CAS  Google Scholar 

  26. Sombrook J, Fritsch EF, Maniatis T (1989) In: Cold Spring Harbor Laboratory Press, New York

  27. Kral T, Hof M, Langner M (2002) Biol Chem 383(2):331–335

    Article  PubMed  CAS  Google Scholar 

  28. Gregor I, Patra D, Enderlein J (2005) ChemPhysChem 6(1):164–170

    Article  PubMed  CAS  Google Scholar 

  29. Winkler RG, Keller S, Radler JO (2006) Phys Rev E 73(4):041919

    Article  CAS  Google Scholar 

  30. Korolev N, Lyubartsev AP, Laaksonen A, Nordenskiold L (2002) Biophys J 82(6):2860–2875

    Article  PubMed  CAS  Google Scholar 

  31. Adjimatera N, Kral T, Hof M, Blagbrough IS (2006) Pharm Res 23(7):1564–1573

    Article  PubMed  CAS  Google Scholar 

  32. Schweitzer C, Scaiano JC (2003) Phys Chem Chem Phys 5(21):4911–4917

    Article  CAS  Google Scholar 

  33. Seils J, Pecora R (1995) Macromolecules 28(3):661–673

    Article  CAS  Google Scholar 

  34. Humpolickova J, Benda A, Sykora J, Machan R, Kral T, Gasinska B, Enderlein J, Hof M (2008) Biophys J 94(3):L17–L19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge support of the Ministry of Education of the Czech Republic via grant LC06063 (JH, AB, MH) and long-term research project MSM0021620857 (MŠ, KP) and the Academy of Sciences of the Czech Republic via grant IAA400400621 (TK, MŠ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humpolíčková, J., Štěpánek, M., Kral, T. et al. On Mechanism of Intermediate-Sized Circular DNA Compaction Mediated by Spermine: Contribution of Fluorescence Lifetime Correlation Spectroscopy. J Fluoresc 18, 679–684 (2008). https://doi.org/10.1007/s10895-008-0345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0345-y

Keywords

Navigation