Skip to main content
Log in

Transport properties of mixtures of rarefied gases. Hydrogen–methane system

  • Thermophysical Properties of Substances
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An analysis and generalization of experimental data on transport properties based on the relations of molecular-kinetic theory and three-parameter interaction potentials of the Lennard-Jones (m–6) family have been performed for the mixture of rarefied neutral gases "hydrogen–methane." Nine parameters of the potentials have been restored in joint data processing using the weight nonlinear least-squares method. Tables of reference data for viscosity, the interdiffusion coefficient, and the thermal diffusion factor have been calculated in the temperature interval 200–1500 K. Errors of reference data in the entire interval of concentrations, including those of pure components, have been evaluated using the matrix of parametric errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Fokin and N. A. Slavinskaya, Correlation of the thermophysical properties of rarefied gas mixtures using Ar–Xe as an example, Teplofiz. Vys. Temp., 25, No. 1, 46–51 (1987).

    Google Scholar 

  2. L. R. Fokin and A. N. Kalashnikov, Transport properties of rarefied mixtures of gases in the EPIDIF database. The N2–H2 system, Teplofiz. Vys. Temp., 47, No. 5, 675–687 (2009).

    Google Scholar 

  3. A. G. Shashkov, A. F. Zolotukhina, L. P. Fokin, and A. N. Kalashnikov, Transfer properties of mixtures of rarefied neutral gases. Hydrogen–argon system, Inzh.-Fiz. Zh., 83, No. 1, 169–188 (2010).

    Google Scholar 

  4. G. Maitland, M. Rigby, E. Smith, and W. A. Wakeham, Intermolecular Forces, Clarendon Press, Oxford (1981).

    Google Scholar 

  5. Y. S. Touloukian, S. C. Saxena, and P. Hestermans, Viscosity, TPRC Data Series, Vol. 11, Plenum Press, New York (1975).

    Google Scholar 

  6. T. R. Marrero and E. A. Mason, Gaseous diffusion coefficients, J. Phys. Chem. Ref. Data, 1, 3–117 (1971).

    Article  Google Scholar 

  7. A. F. Bogatyrev, N. O. Dzhamankulova, A. G. Karpushin, et al., SSSRD 371-90. Hydrogen–methane. CVD depending on temperature, molar density, and composition of a mixture in the gas phase in the temperature range from 130 to 460 K, pressures of up to 5.0 MPa, molar fraction of hydrogen in the mixture 0.01–0.99, SDSRD, Moscow (1990).

  8. P. H. Paul, DRFM: A new package for the equation of gas-phase-transport properties, SANDIA Rt. SAND 98-8203 (1987).

  9. L. R. Fokin, V. N. Popov, and A. N. Kalashnikov, Analytical representation of collision integrals for the Lennard-Jones (m–6) potential in the EPIDIF database, Teplofiz. Vys. Temp., 37, No. 1, 49–55 (1999).

    Google Scholar 

  10. F. A. Guevara, B. B. McInteer, and W. E. Wageman, High-temperature viscosity ratio for H2, He, Ar and N2, Phys. Fluids, 12, No. 2, 2493–2505 (1968).

    Article  Google Scholar 

  11. V. E. Lyusternik and L. R. Fokin, Transport of Molecular Hydrogen, Report of the Joint Institute for High Temperatures No. 39/86, IVTAN, Moscow (1980).

  12. A. D. Kozlov, V. M. Kuznetsov, and Yu. V. Mamonov, SSSRD R 233-87. Normal hydrogen. Coefficients of dynamic viscosity and thermal conductivity at temperatures 14–1500 K and pressures from a rarefied gas up to 100 MPa. Deposited at VNIIKI 23.01.88, No. 466, kk88. Moscow (1988).

  13. N. B. Vargaftik, Yu. K. Vinogradov, and V. S. Yargin, Handbook of Physical Properties of Liquids and Gases, Begell House, New York (1997).

    Google Scholar 

  14. J. J. Hurly and M. R. Moldover, Ab initio values of the thermophysical properties of helium as standards, J. Res. NIST, 105, No. 5, 667–688 (2000).

    Google Scholar 

  15. E. F. May, R. F. Berg, and M. R. Moldover, Reference viscosity of H2, CH4, Ar, and Xe at low densities, Int. J. Thermophysics, 28, No. 4, 1085–1110 (2007).

    Article  Google Scholar 

  16. A. K. Barua, G. P. Flynn, and S. T. Ross, The viscosity of H2, D2, CH4 and CO from −50° to 150°C below 200 atmospheres, J. Chem. Phys., 41, No. 2, 374–378 (1964).

    Article  Google Scholar 

  17. J. Kestin and Y. Yata, Viscosity and diffusion coefficient of six binary mixtures, J. Chem. Phys., 49, No. 11, 4780–4786 (1968).

    Article  Google Scholar 

  18. A. G. Clarke, G. C. Maitland, M. Rigby, and E. B. Smith, Low-temperatures viscosities and intermolecular potential of simple gases, J. Chem. Phys., 51, No. 9, 4156–4161 (1969).

    Article  Google Scholar 

  19. R. A. Dawe, G. C. Maitland, M. Rigby, and E. B. Smith, Viscosity of quasi-spherical molecules, Trans. Faraday Soc., 66, No. 8, 1955–1963 (1970).

    Article  Google Scholar 

  20. J. Kestin, S. T. Ro, and W. A. Wakeham, Reference values of the viscosity of twelve gases at 25°C, Trans. Faraday Soc., 67, 2308–2313 (1971).

    Article  Google Scholar 

  21. J. M. Hellemans, J. Kestin, and S. T. Ro, The viscosity of CH4, CF4, and SF6 over a range of temperatures, Physica, 65, 376–380 (1973).

    Article  Google Scholar 

  22. G. C. Maitland and E. B. Smith, Viscosity of binary gas mixtures at high temperatures, J. Chem. Soc. Faraday Trans. I, 70, No. 7, 1191–1211 (1974).

    Article  Google Scholar 

  23. D. L. Timrot, M. A. Serednitskaya, and M. S. Bespalov, Experimental investigation of the viscosity of methane, ethylene, and of their deutero derivatives, Dokl. Akad. Nauk SSSR, 220, No. 4, 799–801 (1975).

    Google Scholar 

  24. D. W. Gough, G. P. Matthews, and E. B. Smith, Viscosity of nitrogen and certain gaseous mixtures at low temperatures, J. Chem. Soc. Faraday Trans. I, 72, No. 3, 1132–1134 (1976).

    Google Scholar 

  25. J. Kestin, H. E. Khalifa, and W. A. Wakeham, The viscosity of five gaseous hydrocarbons, J. Chem. Phys., 66, No. 3, 1132–1134 (1974).

    Article  Google Scholar 

  26. Y. Abe, J. Kestin, and W. A. Wakeham, The viscosity and diffusion coefficients of the mixtures for light hydrocarbon gases, Physica, 93A, 155–170 (1978).

    Google Scholar 

  27. E. Vogel, J. Wilhelm, and C. Kuchenmeister, High-precision viscosity measurements on methane, High Temp. — High Pressure, 32, 73–81 (2000).

    Article  Google Scholar 

  28. C. Evers, H. W. Losch, and W. Wagner, An absolute viscometer-densimeter and measurements of the viscosity of N2, CH4, He, Ne, Ar, and Kr over a wide range of density and temperature, Int. J. Thermophys., 23, No. 6, 1411–1431 (2002).

    Article  Google Scholar 

  29. P. Schley, M. Jaeschke, C. Kuchenmeister, and E. Vogel, Viscosity measurements and predictions for natural gas, Int. J. Thermophys., 25, No. 6, 1623–1627 (2004).

    Article  Google Scholar 

  30. R. D. Trengove and W. A. Wakeham, Viscosity of carbon dioxide, methane and sulfohexafluoride, J. Phys. Chem. Ref. Data, 16, No. 2, 175–186 (1987).

    Google Scholar 

  31. A. D. Kozlov, V. M. Kuznetsov, Yu. V. Mamonov, et al., SSSRD 94-86. Methane. Coefficients of dynamic viscosity and thermal conductivity at temperatures 91–1000 K and pressures from a rarefied gas up to 1000 MPa, Izd. Standartov, Moscow (1986) (See also SDSRD 195-01).

  32. R. Hellmann, E. Vogel, A. S. Dickinson, and V. Vesovic, Calculation of the transport properties of methane. Shear viscosity, viscomagnetic effects and self-diffusion, J. Chem. Phys. 129, 064002(12) (2008).

  33. M. Trautz and K. G. Sorg, Die Reibung, Warmeleitung und Diffusion in Gasmesungen. XVI. Die Reibung von H2, CH4, C3H6, C3H8 und ihren binaren Gemischen, Ann. Phys., 10, No. 1, 81–96 (1931).

    Article  Google Scholar 

  34. A. A. Vigasin, N. Kh. Zimina, V. E. Lyusternik, et al., SSSRD 49-83. Nitrogen. The second virial coefficient, the coefficients of dynamic viscosity, thermal conductivity, self-diffusion and the Prandtl number of a rarefied gas in the temperature range 65-2500 K, Izd. Standartov, Moscow (1984).

  35. J. Kestin and S. T. Ro, The viscosity of CO — mixtures with four gases in the temperature range 25–200°C, Ber. Bunsenges. Phys. Chem., 87, 600–602 (1983).

    Google Scholar 

  36. R. Hellmann, E. Bich, and E. Vogel, Ab initio intermolecular potential energy surface and second pressure virial coefficient of methane, J. Chem. Phys., 128, 214303(9) (2008).

  37. E. B. Winn, The temperature dependence of the self-diffusion of Ar, Ne, N2, O2, CO2 and methane, Phys. Rev., 80, 1024–1027 (1950).

    Article  Google Scholar 

  38. C. R. Mueller and R. W. Cahili, Mass-spectrometric measurement of diffusion coefficients, J. Chem. Phys., 40, No. 3, 651–654 (1963).

    Article  Google Scholar 

  39. R. Dawson, F. Khoury, and R. Kobayashi, Self-diffusion measurements in methane by pulse nuclear magnetic resonanse, AIChE J., 16, No. 5, 725–729 (1970).

    Article  Google Scholar 

  40. H. F. Vugts, A. J. H. Boerboom, and J. Los, Diffusion coefficients of isotopic methane mixtures and methane–rare gas mixtures, Physica, 51, No. 2, 311–318 (1971).

    Article  Google Scholar 

  41. I. F. Golubev, Viscosity of Gases and Gas Mixtures (Reference guidelines) [in Russian], GIFML, Moscow (1959).

    Google Scholar 

  42. H. Iwasaki and K. Takahashi, Studies on the viscosities of gases at high pressure. VII. Viscosity of mixtures of methane and hydrogen, Bull. Chem. Res. Inst. Non-Aqueous Solut. Tohoku Univ., 10, Nos. 1–2, 81–92 (1961).

    Google Scholar 

  43. I. F. Golubev and N. E. Gnezdilov, Viscosity of the methane–hydrogen mixture at temperatures from 273 to 523 K and pressures up to 490.3⋅105 N ⁄ m2, Teploénergetika, No. 6, 93–95 (1967).

  44. S. Chuang, P. S. Chappelear, and R. Kobayashi, Viscosity of methane, hydrogen and four mixtures from −100°C to 0°C at high pressures, J. Chem. Eng. Data, 21, No. 4, 403–414 (1976).

    Article  Google Scholar 

  45. J. Kestin, S. T. Ro, and W. A. Wakeham, The transport properties of binary mixtures of hydrogen with CO, CO2, and CH4, Physica A, 123, 615–638 (1983).

    Article  Google Scholar 

  46. Y. Kobayashi, A. Kurokawa, and M. Hirata, Viscosity measurements of hydrogen-methane mixed gas for future energy system, J. Thermal Sci. Tehnol., 2, No. 2, 236–244 (2007).

    Google Scholar 

  47. A. Obermayer, Versuche über Diffusion von Gasen, Sitzber. Akad. Wiss. Wien, 87, 188–206 (1983).

    Google Scholar 

  48. Ch. H. Boyd, N. Stein, V. Steingmesson, and W. A. Rumpel, An interferometric method of determining diffusion coefficients of gaseous systems, J. Chem. Phys., 19, No. 5, 548–553 (1951).

    Article  Google Scholar 

  49. P. Fejes and L. Czaran, Investigation on gas diffusion during flow in tubes, empty or filled with non-adsorbing substances, Acta Chim. Hung., 29, 171–186 (1961).

    Google Scholar 

  50. K. R. Arnold and H. L. Toor, Unsteady diffusion in ternary gas mixtures, AIChE J., 13, No. 5, 909–914 (1967).

    Article  Google Scholar 

  51. S. Gotoh, M. Manner, J. P. Sorensen, and W. F. Stewart, Hydrodynamics of binary diffusion coefficients of low-density gases. I. Measurements by modified Loschmidt method, J. Chem. Eng. Data, 19, No. 2, 169–171 (1974).

    Article  Google Scholar 

  52. T. C. Chu and R. Kobayashi, Diffusivity of light hydrocarbons into hydrogen, J. Chem. Eng. Data, 19, No. 4, 299–303 (1974).

    Article  Google Scholar 

  53. Yu. I. Zhavrin, N. D. Kosov, and Z. I. Novosad, Description of nonstationary diffusion in multicomponent gas mixtures by the method of effective diffusion coefficients, Zh. Fiz. Khim., 49, No. 3, 706–709 (1975).

    Google Scholar 

  54. J. Amoroux, B. Sancez, and A. Saint-Yrieix, Mise au point d’une technique chromatographic pour la determination des coefficients de diffusion, Bull. Soc. Chim. Fr., Nos. 11–12, I-462–466 (1978).

  55. A. G. Shister, Mutual Diffusion of Some Real Gaseous Mixtures at Different Temperatures, Author’s Abstract of Candidate’s Dissertation (in Physics and Mathematics), KazGU, Alma-Ata (1986).

  56. A. F. Bogatyrev and A. G. Karpushin, Coefficients of mutual diffusion of some hydrocarbons at different thermodynamic parameters, Butler Commun., No. 10, 127–128 (2002).

    Google Scholar 

  57. M. A. Nizovitina, Investigation of the Dependence of the Coefficients of Mutual Diffusion of Hydrocarbon Gases on Pressure at Different Temperatures, Candidate’s Dissertation (in Engineering), MÉI, Smolensk (2011).

  58. N. G. Schmalh and J. Schewe, Die thermische Entmischung von Gasgemischen. II, Z. Electrochem., 46, No. 3, 203–212 (1940).

    Google Scholar 

  59. H. G. Drickamer, S. L. Downey, and T. Pierce, Thermal diffusion in hydrogen–hydrocarbon mixtures, J. Chem. Phys., 17, No. 4, 408–410 (1949).

    Article  Google Scholar 

  60. G. G. Devyatykh, S. M. Vlasov, and Yu. N. Tsinovoi, Determination of the thermal diffusion constant of the Lennard-Jones (12–6) potential for binary hydride–hydrogen and hydride–hydride mixtures, Zh. Fiz. Khim., 42, No. 11, 2745–2750 (1968).

    Google Scholar 

  61. I. N. Korzun and A. M. Sapronov, Thermodiffusion separation of binary hydrogen–methane mixtures at certain pressures, concentrations, and temperatures, in: Physical Hydrodynamics and Duffusion in Gaseous Mixtures [in Russian], KazGU, Alma-Ata (1985), pp. 59–61.

  62. A. F. Bogatyrev and V. R. Belavov, Thermoduffusion characteristics of certain hydrocarbon gases, in: Proc. XII Russian Conf. on Thermophysical Properties of Substances, Vol. 2, St. Petersburg GUNTPT, St. Petersburg (2005), p. 17.

  63. A. F. Zolotukhina, Application of the similarity theory to generalize the factor of thermal diffusion of a mixture of polyatomic nonpolar gases, Inzh.-Fiz. Zh., 56, No. 4, 604–612 (1989).

    Google Scholar 

  64. H. Adzumi, Studies on the flow of gaseous mixtures. I. The viscosity of binary gaseous mixtures, Bull. Chem. Soc. Jpn., 12, No. 5, 199–218 (1937).

    Article  Google Scholar 

  65. Interrnational Critical Tables of Numerical Data: Physics, Chemistry, and Technology, Vol. 5. McGrow-Hill Book Co, New York (1929), p. 5.

  66. N. Nabizadeh and F. Mayinger, Viscosity of binary mixtures of hydrogen and natural gas (hythane) in the gaseous phase, High Temp.-High Pressure, 31, 601–612 (1999).

    Article  Google Scholar 

  67. B. P. Reid, M. J. O’Loughin, and R. K. Sparks, Methane–methane isotropic interaction potential from total differential cross sections, J. Chem. Phys., 83, No. 11, 5656–5662 (1985).

    Article  Google Scholar 

  68. A. Borysow and L. Frommhold, Theoretical collision-induced rototranslation absortion spectra of H2–CH4 pairs for the outer planets, Astrophys. J., 304, 849–865 (1986).

    Article  Google Scholar 

  69. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids [Russian translation], IL, Moscow (1961).

  70. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances [in Russian], Vol. 2, Book 1, Nauka, Moscow (1979).

  71. A. D. Kozlov, V. M. Kuznetsov, and Yu. V. Mamonov, Analysis of the contemporary methods of calculation of recommended reference data on the coefficients of viscosity and thermal conductivity of gases and liquids, in: Reviews of Thermophysical Properties of Substances, No. 3 (77), IVTAN, Moscow (1989).

  72. L. R. Fokin, V. E. Popov, and S. P. Naurzakov, The equation of state and thermodynamic properties of saturated and overheated mercury vapors up to 1650 K and 125 MPa, Teplofiz. Vys. Temp., 49, No. 6 (2011).

    Google Scholar 

  73. G. A. Stevens and A. G. De Vries, The influence of the distribution of atomic masses within the molecule thermal diffusion. II. Isotopic methane and methane/argon mixture, Physica, 39, No 3, 346–360 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Fokin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 6, pp. 1306–1317, November–December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokin, L.R., Kalashnikov, A.N. & Zolotukhina, A.F. Transport properties of mixtures of rarefied gases. Hydrogen–methane system. J Eng Phys Thermophy 84, 1408–1420 (2011). https://doi.org/10.1007/s10891-011-0612-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0612-7

Keywords

Navigation