Skip to main content
Log in

Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The zero-density viscosity \({\eta_{0,T}^{\rm gas}}\) of hydrogen, methane, and argon was determined in the temperature range from 200 to 400 K, with standard uncertainties of 0.084% for hydrogen and argon and 0.096% for methane. These uncertainties are dominated by the uncertainty of helium’s viscosity \({\eta_{0,T}^{\rm He}}\) , which we estimate to be 0.080% from the difference between ab initio and measured values at 298.15 K. For xenon, measurements ranged between 200 and 300 K and the zero-density viscosity \(\eta _{0,T}^{\rm Xe} \) was determined with an uncertainty of 0.11%. The data imply that xenon’s viscosity virial coefficient is positive over this temperature range, in contrast with the predictions of corresponding-states models. Furthermore, the xenon data are inconsistent with Curtiss’ prediction that bound pairs cause an anomalous viscosity decrease at low reduced temperatures. At 298.15 K. the ratios \(\eta _{0,298}^{\rm Ar}\!/\eta_{0,298}^{\rm He} ,{\eta _{0,298}^{{\rm CH}_{4}} }\!/\eta_{0,298}^{\rm He },{\eta _{0,298}^{{\rm H}_2} }\!/{\eta_{0,298}^{\rm He}},{\eta_{0,298}^{\rm Xe} }\!/{\eta _{0,298}^{\rm He} }, {\eta _{0,298}^{{\rm N}_2} }\!/{\eta _{0,298}^{\rm He}}\) , and \({\eta _{0,298}^{{\rm C}_2{\rm H}_6} }/{\eta _{0,298}^{\rm He} }\) were determined with a relative uncertainty of less than 0.024% by measuring the flow rate of these gases through a quartz capillary while simultaneously measuring the pressures at the ends of the capillary. Between 200 and 400 K, a two-capillary viscometer was used to determine \({\eta_{0,T}^{\rm gas} }/{\eta_{0,T}^{\rm He} }\) with an uncertainty of 0.024% for H2 and Ar, 0.053% for CH4, and 0.077% for Xe. From \({\eta_{0,T}^{\rm gas} }/{\eta_{0,T}^{\rm He} }, \eta_{0,T}^{\rm gas} \) was computed using the values of \(\eta_{0,T}^{\rm He}\) calculated ab initio. Finally, the thermal conductivity of Xe and Ar was computed from \(\eta_{0,T}^{\rm gas} \) and values of the Prandtl number that were computed from interatomic potentials. These results may help to improve correlations for the transport properties of these gases and assist efforts to develop ab initio two- and three-body intermolecular potentials for these gases. Reference viscosities for seven gases at 100 kPa are provided for gas metering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. May E.F., Moldover M.R., Berg R.F., Hurly J.J. (2006) Metrologia 43:247

    Article  ADS  Google Scholar 

  2. Moldover M.R., Boyes S.J., Meyer C.W., Goodwin A.R.H. (1999) J. Res. NIST 104:11

    Google Scholar 

  3. G. F. Strouse, D. R. Defibaugh, M. R. Moldover, and D. C. Ripple, in Temperature: Its Measurement and Control in Science and Industry, Vol. VII, 8th Int. Temp. Symp., D. C. Ripple, ed. (American Institute of Physics, New York, 2003), pp. 31–36.

  4. Moldover M.R., Trusler J.P.M., Edwards T.J., Mehl J.B., Davis R.S. (1988) J. Res. Natl. Bur. Stand. (U.S.) 93:85

    Google Scholar 

  5. B. Fellmuth, J. Fischer, C. Gaiser, and W. Buck, BIPM Document CCT/05-02, http://www.bipm.fr/cc/CCT/Allowed/23/CCT_05_02.pdf (2005).

  6. Curtiss C.F. (1992) J. Chem. Phys. 97:7679

    Article  ADS  MathSciNet  Google Scholar 

  7. Hirschfelder J.O., Curtiss C.F., Bird R.B. (1964) Molecular Theory of Gases and Liquids. Wiley, New York

    Google Scholar 

  8. Dham A.K., Meath W.J., Allnat A.R., Aziz R.A., Slaman M.J. (1990) Chem. Phys. 142:173

    Article  Google Scholar 

  9. See, for example, R. Hellman, E. Bich, and E. Vogel, Proc. 16th Symp. Thermophys. Props., Boulder, Colorado (July 31–August 4, 2006).

  10. Hurly J.J., Moldover M.R. (2000) . J. Res. Natl. Inst. Stand. Technol. (U.S.) 105:667

    Google Scholar 

  11. J. J. Hurly and M. R. Moldover, unpublished (2004); J. J. Hurly and J. B. Mehl, J. Res. Natl. Inst. Stand. Technol. 112:75 (2007).

  12. Kestin J., Leidenfrost W. (1959) Physica 25:1033

    Article  ADS  Google Scholar 

  13. Evers C., Lösch H.W., Wagner W. (2002) Int. J. Thermophys. 23:1411

    Article  Google Scholar 

  14. Berg R.F. (2005) Metrologia 42:11

    Article  ADS  Google Scholar 

  15. R. F. Berg, erratum to Metrologia 42:11 (2005); Metrologia 43:183 (2006).

    Google Scholar 

  16. Berg R.F., Tison S.A., (2004) . J. Res. Natl. Inst. Stand. Technol. (U.S.) 109:435

    Google Scholar 

  17. Boyes S.J. (1994) Chem. Phys. Lett. 221:467

    Article  ADS  Google Scholar 

  18. Hurly J.J., Schmidt J.W., Boyes S.J., Moldover M.R. (1997) Int. J. Thermophys. 18:579

    Article  Google Scholar 

  19. Vogel E., Wilhelm J., Küchenmeister C., Jaeschke M. (2000) High Temp. High Press. 32:73

    Article  Google Scholar 

  20. E. W. Lemmon, M. O. McLinden, and M. L. Huber, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 7.0, http://www.nist.gov/srd/nist23.htm (2002).

  21. Assael M.J., Mixafendi S., Wakeham W.A. (1986) J. Phys. Chem. Ref. Data 15:1315

    Article  ADS  Google Scholar 

  22. Rainwater J.C., Friend D.G. (1987) Phys. Rev. A 36:4062

    Article  ADS  Google Scholar 

  23. Lemmon E.W., Jacobsen R.T. (2004) Int. J. Thermophys. 25:21

    Article  Google Scholar 

  24. Gracki J.A., Flynn G.P., Ross J. (1969) J. Chem. Phys. 51:3856

    Article  ADS  Google Scholar 

  25. Wilhelm J., Vogel E., (2000) Int. J. Thermophys. 21:301

    Article  Google Scholar 

  26. Vogel E., Küchenmeister C., Bich E., Laesecke A. (1998) J. Phys. Chem. Ref. Data 27:947

    Article  ADS  Google Scholar 

  27. Hurly J.J., Gillis K.A., Mehl J.B., Moldover M.R. (2003) Int. J. Thermophys. 24:1441

    Article  Google Scholar 

  28. Kestin J., Yata J. (1968) J. Chem. Phys. 49:4780

    Article  ADS  Google Scholar 

  29. Schley P., Jaeschke M., Küchenmeister C., Vogel E. (2004) Int. J. Thermophys. 25:1623

    Article  Google Scholar 

  30. Barua A.K., Afzal M., Flynn G.P., Ross J. (1964) J. Chem. Phys. 41:374

    Article  ADS  Google Scholar 

  31. Hendl S., Vogel E. (1994) Fluid Phase Equilib. 76:259

    Article  Google Scholar 

  32. Najafi B., Ghayeb Y., Rainwater J.C., Alavi S., Snider R.F. (1998) Physica A 260:31

    Article  Google Scholar 

  33. Clarke A.G., Smith E.B. (1968) J. Chem. Phys. 48:3988

    Article  ADS  Google Scholar 

  34. Clarke A.G., Smith E.B. (1969) J. Chem. Phys. 51:4156

    Article  ADS  Google Scholar 

  35. Flynn G.P., Hanks R.V., Lemaire N.A., Ross J. (1963) J. Chem. Phys. 38:154

    Article  ADS  Google Scholar 

  36. Bich E., Millat J., Vogel E. (1990) J. Phys. Chem. Ref. Data 19:1289

    Article  ADS  Google Scholar 

  37. Michels A., Wassenaar T., Louwerse P. (1954) Physica 20:99

    Article  ADS  Google Scholar 

  38. Vogel E. (1984) Ber. Bunsenges. Phys. Chem. 88:997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, E.F., Berg, R.F. & Moldover, M.R. Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities. Int J Thermophys 28, 1085–1110 (2007). https://doi.org/10.1007/s10765-007-0198-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0198-7

Keywords

Navigation