Skip to main content
Log in

Recent Developments in Extended Thermodynamics of Dense and Rarefied Polyatomic Gases

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We summarize the recent results and current open problems in extended thermodynamics (ET) of both dense and rarefied polyatomic gases. (i) We review, in particular, extended thermodynamics with 14 independent fields (ET14), that is, the mass density, the velocity, the temperature, the shear stress, the dynamic pressure, and the heat flux. (ii) We explain that, in the case of rarefied polyatomic gases, molecular extended thermodynamics with 14 independent fields (MET14) basing on the kinetic moment theory with the maximum entropy principle can be developed. ET14 and MET14 are fully consistent with each other. (iii) We show that the ET13 theory of rarefied monatomic gases is derived from the ET14 theory as a singular limit. (iv) We discuss briefly some typical applications of the ET14 theory. (v) We study the simple case of ET theory with 6 independent fields (ET6). (vi) The METn theories (n>14) are presented briefly. We analyze, in particular, the dependence of the characteristic velocities for increasing number of moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The entropy density used in the mathematical community has usually opposite sign to the present one. As a consequence, they speak about convexity instead of concavity.

  2. For the definition of the temperature T in nonequilibrium, see the reference [19].

References

  1. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1963)

    Google Scholar 

  2. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, London (1958)

    Google Scholar 

  3. Ruggeri, T.: Can constitutive relations be represented by non-local equations? Q. Appl. Math. 70, 597–611 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  5. Liu, I.-S., Müller, I.: Extended thermodynamics of classical and degenerate ideal gases. Arch. Ration. Mech. Anal. 83(4), 285–332 (1983)

    Article  MATH  Google Scholar 

  6. Liu, I.-S., Muller, I., Ruggeri, T.: Relativistic thermodynamics of gases. Ann. Phys. 169, 191–219 (1986)

    Article  MathSciNet  Google Scholar 

  7. Ikenberry, E., Truesdell, C.: On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory. J. Ration. Mech. Anal. 5, 1–54 (1956)

    MATH  MathSciNet  Google Scholar 

  8. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  9. Müller, I., Weiss, W.: Thermodynamics of irreversible processes—past and present. Eur. Phys. J. H 37, 139–236 (2012)

    Article  Google Scholar 

  10. Engholm, H. Jr., Kremer, G.M.: Thermodynamics of a diatomic gas with rotational and vibrational degrees of freedom. Int. J. Eng. Sci. 32(8), 1241–1252 (1994)

    Article  MATH  Google Scholar 

  11. Kremer, G.M.: Extended thermodynamics and statistical mechanics of a polyatomic ideal gas. J. Non-Equilib. Thermodyn. 14, 363–374 (1989)

    MATH  Google Scholar 

  12. Kremer, G.M.: Extended thermodynamics of molecular ideal gases. Contin. Mech. Thermodyn. 1, 21–45 (1989)

    Article  MathSciNet  Google Scholar 

  13. Liu, I.-S.: Extended thermodynamics of fluids and virial equations of state. Arch. Ration. Mech. Anal. 88, 1–23 (1985)

    MATH  Google Scholar 

  14. Kremer, G.M.: Extended thermodynamics of non-ideal gases. Physica A 144, 156–178 (1987)

    Article  Google Scholar 

  15. Liu, I.-S., Kremer, G.M.: Hyperbolic system of field equations for viscous fluids. Mat. Apl. Comput. 9(2), 123–135 (1990)

    MATH  MathSciNet  Google Scholar 

  16. Liu, I.-S., Salvador, J.A.: Hyperbolic system for viscous fluids and simulation of shock tube flows. Contin. Mech. Thermodyn. 2, 179–197 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kremer, G.M.: On extended thermodynamics of ideal and real gases. In: Sieniutycz, S., Salamon, P. (eds.) Extended Thermodynamics Systems, pp. 140–182. Taylor and Francis, New York (1992)

    Google Scholar 

  18. Carrisi, M.C., Mele, M.A., Pennisi, S.: On some remarkable properties of an extended thermodynamic model for dense gases and macromolecular fluids. Proc. R. Soc. A 466, 1645–1666 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24, 271–292 (2011)

    Article  Google Scholar 

  20. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for polyatomic gases. Physica A 392, 1302–1317 (2013)

    Article  MathSciNet  Google Scholar 

  21. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012)

    Article  MathSciNet  Google Scholar 

  22. Arima, T., Mentrelli, A., Ruggeri, T.: Extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111–140 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ruggeri, T.: Galilean invariance and entropy principle for systems of balance laws. the structure of extended thermodynamics. Contin. Mech. Thermodyn. 1, 3–20 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. USA 68(8), 1686–1688 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  25. Arima, T., Sugiyama, M.: Characteristic features of extended thermodynamics of dense gases. Atti Accad. Pelorit. Pericol. 90(Suppl. No. 1), 1–15 (2012)

    Google Scholar 

  26. Kogan, M.N.: On the principle of maximum entropy. In: Rarefied Gas Dynamics, vol. I, pp. 359–368. Academic Press, New York (1967)

    Google Scholar 

  27. Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A, Math. Gen. 20, 6505–6517 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37. Springer, New York (1993)

    MATH  Google Scholar 

  29. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5/6), 1021–1065 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Contin. Mech. Thermodyn. 9, 205–212 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Brini, F., Ruggeri, T.: Entropy principle for the moment systems of degree α associated to the Boltzmann equation. Critical derivatives and non controllable boundary data. Contin. Mech. Thermodyn. 14, 165–189 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18, 405–420 (1975)

    Article  Google Scholar 

  33. Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases. Eur. J. Mech. B, Fluids 13(2), 237–254 (1994)

    MATH  Google Scholar 

  34. Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B, Fluids 24, 219–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pavić-Čolić, M., Simić, S.: Moment equations for polyatomic gases. Acta Appl. Math. (2014). doi:10.1007/s10440-014-9928-6

    Google Scholar 

  36. Mallinger, F.: Generalization of the Grad theory to polyatomic gases. Research Report RR-3581, INRIA (1998)

  37. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136–2140 (2013)

    Article  MathSciNet  Google Scholar 

  38. Müller, I., Ruggeri, T.: Stationary heat conduction in radially, symmetric situations—an application of extended thermodynamics. J. Non-Newton. Fluid Mech. 119, 139–143 (2004)

    Article  MATH  Google Scholar 

  39. Barbera, E., Brini, F., Sugiyama, M.: Heat transfer problem in a van der Waals gas. Acta Appl. Math. (2014). doi:10.1007/s10440-014-9892-1

    Google Scholar 

  40. Arima, T., Barbera, E., Brini, F., Sugiyama, M.: Polyatomic effects on heat conduction in a rarefied gas at rest. Phys. Lett. A (submitted)

  41. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25, 727–737 (2013). doi:10.1007/s00161-012-0271-8

    Article  MathSciNet  Google Scholar 

  42. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: A study of linear waves based on exteded thermodynamics for rarefied polyatomic gases. Acta Appl. Math. (2014). doi:10.1007/s10440-014-9888-x

    Google Scholar 

  43. Weiss, W., Müller, I.: Light scattering and extended thermodynamics. Contin. Mech. Thermodyn. 7, 123–177 (1995)

    Article  MathSciNet  Google Scholar 

  44. Arima, T., Taniguchi, S., Sugiyama, M.: Light scattering in rarefied polyatomic gases based on extended thermodynamics. In: Proceedings of the 34th Symposium on Ultrasonic Electronics, pp. 15–16 (2013)

    Google Scholar 

  45. Vincenti, W.G., Kruger, C.H. Jr.: Introduction to Physical Gas Dynamics. Wiley, New York (1965)

    Google Scholar 

  46. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)

    Google Scholar 

  47. Smiley, E.F., Winkler, E.H., Slawsky, Z.I.: Measurement of the vibrational relaxation effect in CO2 by means of shock tube interferograms. J. Chem. Phys. 20, 923–924 (1952)

    Article  Google Scholar 

  48. Smiley, E.F., Winkler, E.H.: Shock-tube measurements of vibrational relaxation. J. Chem. Phys. 22, 2018–2022 (1954)

    Article  Google Scholar 

  49. Griffith, W.C., Bleakney, W.: Shock waves in gases. Am. J. Phys. 22, 597–612 (1954)

    Article  Google Scholar 

  50. Griffith, W., Brickl, D., Blackman, V.: Structure of shock waves in polyatomic gases. Phys. Rev. 102, 1209–1216 (1956)

    Article  Google Scholar 

  51. Johannesen, N.H., Zienkiewicz, H.K., Blythe, P.A., Gerrard, J.H.: Experimental and theoretical analysis of vibrational relaxation regions in carbon dioxide. J. Fluid Mech. 13, 213–224 (1962)

    Article  Google Scholar 

  52. Griffith, W.C., Kenny, A.: On fully-dispersed shock waves in carbon dioxide. J. Fluid Mech. 3, 286–288 (1957)

    Article  Google Scholar 

  53. Bethe, H.A., Teller, E.: Deviations from Thermal Equilibrium in Shock Waves. Reprinted by Engineering Research Institute. University of Michigan

  54. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Ration. Mech. Anal. 2, 617–642 (1953)

    MATH  MathSciNet  Google Scholar 

  55. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Phys. Rev. E 89, 013025 (2014)

    Article  Google Scholar 

  56. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Shock wave structure in a rarefied polyatomic gas based on extended thermodynamics. Acta Appl. Math. (2014). doi:10.1007/s10440-014-9931-y

    Google Scholar 

  57. Ikoma, A., Arima, T., Taniguchi, S., Zhao, N., Sugiyama, M.: Fluctuating hydrodynamics for a rarefied gas based on extended thermodynamics. Phys. Lett. A 375, 2601–2605 (2011)

    Article  MATH  Google Scholar 

  58. Arima, T., Ikoma, A., Taniguchi, S., Sugiyama, M., Zhao, N.: Fluctuating hydrodynamics based on extended thermodynamics. Note Mat. 32, 227–238 (2012)

    MATH  MathSciNet  Google Scholar 

  59. Landau, L.D., Lifshitz, E.M.: Hydrodynamic fluctuations. Sov. Phys. JETP 5, 512–513 (1957)

    MATH  Google Scholar 

  60. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)

    Article  Google Scholar 

  61. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: On the six-field model of fluids based on extended thermodynamics. Meccanica (2014). doi:10.1007/s11012-014-9886-0

    MathSciNet  Google Scholar 

  62. Meixner, J.: Absorption und Dispersion des Schalles in Gasen mit Chemisch Reagierenden und Anregbaren Komponenten. I. Teil. Ann. Phys. 43, 470–487 (1943)

    Article  MathSciNet  Google Scholar 

  63. Meixner, J.: Allgemeine Theorie der Schallabsorption in Gasen und Flussigkeiten unter Berucksichtigung der Transporterscheinungen. Acustica 2, 101–109 (1952)

    MathSciNet  Google Scholar 

  64. Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137, 305–320 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  65. Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques. C. R. Acad. Sci. Paris A 278, 909–912 (1974)

    MATH  MathSciNet  Google Scholar 

  66. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. Henri Poincaré, a Phys. Théor. 34, 65–84 (1981)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank T. Arima, E. Barbera, F. Brini, A. Mentrelli, M. Pavić, S. Simić, and S. Taniguchi for sharing the pleasant joint works. This work was partially supported by the National Group of Mathematical Physics GNFM-INdAM and by University of Bologna: FARB 2012 Project Extended Thermodynamics of Non-Equilibrium Processes from Macro- to Nano-Scale (T.R.) and by Japan Society of Promotion of Science (JSPS) No. 25390150 (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Ruggeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, T., Sugiyama, M. Recent Developments in Extended Thermodynamics of Dense and Rarefied Polyatomic Gases. Acta Appl Math 132, 527–548 (2014). https://doi.org/10.1007/s10440-014-9923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9923-y

Keywords

Navigation