Skip to main content
Log in

Numerical simulation of crisis phenomena in a subsonic air flow around a thick airfoil with vortex cells

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Crisis phenomena arising in a subsonic air flow around a thick airfoil with vortex cells have been numerically simulated in the process of solving the nonstationary equations of mass and energy conservation and Reynolds equations closed by a model of shear-stress transfer with the use of the finite-volume factorization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Shchukin, Flying vehicles “ÉKIP,” Grazhd. Aviatsiya, No. 6, 11–15 (1993).

  2. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, Numerical simulation of a laminar flow around a cylinder with passive and active vortex cells within the framework of the concept of decomposition of a computational region and with the use of multistage grids, Pis’ma Zh. Tekh. Fiz., 24, Issue 8, 33–41 (1998).

    Google Scholar 

  3. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, Numerical simulation of the effect of decrease in the drag of a cylinder with vortex cells equipped with a system for control of a turbulent boundary layer, Pis’ma Zh. Tekh. Fiz., 24, Issue 17, 16–23 (1998).

    Google Scholar 

  4. S. A. Isaev and A. I. Leont’ev, The concept of a generalized vortex cell and its use in the aerodynamics of thick profiles and technologies of holes, in: Abstracts of the papers submitted to the 9th All-Union Congress on Theoretical and Applied Mechanics, Vol. 2, NNGU, Nizhnii Novgorod (2006), pp. 96–97.

    Google Scholar 

  5. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, Calculation of a laminar flow around a profile with passive and active vortex cells on multiblock intersecting grids, Izv. Vys. Uchebn. Zaved., Aviats. Tekh., No. 3, 30–35 (1999).

  6. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, Numerical simulation of the effect of increase in the lift-drag ratio of profiles due to the suction in vortex cells, Inzh.-Fiz. Zh., 72, No. 3, 572–575 (1999).

    Google Scholar 

  7. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, Numerical analysis of the influence of the angle of attack on a turbulent incompressible-fluid flow past a thick profile with vortex cells, Inzh.-Fiz. Zh., 73, No. 4, 719–727 (2000).

    Google Scholar 

  8. S. A. Isaev, A. G. Sudakov, P. A. Baranov, and Yu. S. Prigorodov, Effect of supercirculation in a flow around a thick profile with vortex cells, Dokl. Ross. Akad. Nauk, 377, No. 2, 198–200 (2001).

    Google Scholar 

  9. S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, Analysis of the efficiency of control of flows about bodies with the use of vortex cells with allowance for the expenditure of energy, Inzh.-Fiz. Zh., 75, No. 3, 47–50 (2002).

    Google Scholar 

  10. S. A. Isaev, Yu. S. Prigorodov, A. G. Sudakov, and D. P. Frolov, Numerical simulation of the influence of the viscosity on a turbulent flow around a thick airfoil with vortex cells, Inzh.-Fiz. Zh., 75, No. 6, 100–103 (2002).

    Google Scholar 

  11. S. A. Isaev, P. A. Baranov, N. A. Kudryavtsev, I. A. Pyshnyi, and V. B. Kharchenko, Numerical simulation of a nonstationary turbulent flow around a thick profile with vortex cells in the presence of a suction from the surface of the central bodies, Aéromekh. Gaz. Dinam., No. 3, 3–15 (2002).

    Google Scholar 

  12. S. A. Isaev, I. A. Pyshnyi, A. Yu. Snegirev, A. E. Usachov, and V. B. Kharchenko, Multiblock computational technologies of solving fundamental, applied, and operational problems of power engineering and transport, in: G. A. Kryzhanovskii and E. A. Kuklev (Eds.), Scientific Bulletin of the Academy of Civil Aviation. Series: Problems in Flight Safety and Maintenance of Air Transport, No. 1, 50–58 (2003).

  13. A. V. Ermishin and S. A. Isaev (Eds.), Control of Flows around Bodies with Vortex Cells as Applied to Flying Vehicles of Integral Arrangement (Numerical and Physical Simulation) [in Russian], MGU, Moscow (2003).

    Google Scholar 

  14. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, Control of a turbulent flow around a thick profile in the case of intensification of the flow in the vortex cells due to the suction from the surface of central bodies, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 57–68 (2003).

  15. S. A. Isaev, P. A. Baranov, N. A. Kudryavtsev, I. A. Pyshnyi, and A. G. Sudakov, Numerical analysis of the influence of the angle of attack on a turbulent flow around a thick profile with vortex cells at high Reynolds numbers, Inzh.-Fiz. Zh., 76, No. 4, 115–124 (2003).

    Google Scholar 

  16. S. A. Isaev, P. A. Baranov, N. A. Kudryavtsev, D. A. Lysenko, and A. E. Usachov, Multiblock computational technologies for solving problems of hydraulics and aeromechanics, Nauch.-Tekh. Vedom. SPbGPU, No. 1(39), 48–59 (2005).

    Google Scholar 

  17. Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leont’ev, Numerical Simulation of a Vortex Intensification of Heat Transfer in Bunches of Pipes [in Russian], Sudostroenie, St. Petersburg (2005).

    Google Scholar 

  18. F. R. Menter, Zonal two-equation k-ω turbulence models for aerodynamic flows, AIAA Paper, No. 93-2906 (1993).

  19. P. A. Baranov, S. A. Isaev, A. N. Mikhalev, and A. G. Sudakov, Calculation of sub-, super-, and hypersonic flows around a drop-like cupped body with the use of the model of shear-stress transfer, in: Proc. Int. Conf. “Problems of Ballistics-2006” and of the 5th Int. School-Seminar “Intrachamber Processes, Combustion, and Gas Dynamics of Disperse Systems [in Russian], Vol. 2, St. Petersburg (2006), pp. 40–43.

    Google Scholar 

  20. P. A. Baranov, S. A. Isaev, A. I. Leont’ev, and A. E. Usachov, Numerical simulation of a decrease in the aerodynamic heating of a profile with spherical and honeycomb holes at super-and hypersonic velocities, in: Proc. 4th Russian National Conf. on Heat Transfer, Vol. 6, Disperse Flows and Porous Media. Enhancement of Heat Transfer [in Russian], Izd. Dom MÉI, Moscow (2006), pp. 158–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 80, No. 6, pp. 122–126, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, S.A., Sudakov, A.G., Baranov, P.A. et al. Numerical simulation of crisis phenomena in a subsonic air flow around a thick airfoil with vortex cells. J Eng Phys Thermophy 80, 1193–1198 (2007). https://doi.org/10.1007/s10891-007-0153-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-007-0153-2

Keywords

Navigation