Skip to main content
Log in

Effect of Inflow Turbulence on an Airfoil Flow with Laminar Separation Bubble: An LES Study

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present paper is concerned with numerical investigations on the effect of inflow turbulence on the flow around a SD7003 airfoil. At a Reynolds number Rec = 60,000, an angle of attack α = 4 and a low or zero turbulence intensity of the oncoming flow, the flow past the airfoil is known to be dominated by early separation, subsequent transition and reattachment leading to a laminar separation bubble with a distinctive pressure plateau. The objective of the study is to investigate the effect of inflow turbulence on the flow behavior. For this purpose, a numerical methodology relying on a wall-resolved large-eddy simulation, a synthetic turbulence inflow generator and a specific source term concept for introducing the turbulence fluctuations within the computational domain is used. The numerical technique applied allows the variation of the free-stream turbulence intensity (TI) in a wide range. In order to analyze the influence of TI on the arising instantaneous and time-averaged flow field past the airfoil, the present study evaluates the range 0%TI ≤ 11.2%, which covers typical values found in atmospheric boundary layers. In accordance with experimental studies it is shown that the laminar separation bubble first shrinks and finally completely vanishes for increasing inflow turbulence. Consequently, the aerodynamic performance in terms of the lift-to-drag ratio increases. Furthermore, the effect of the time and length scales of the isotropic inflow turbulence on the development of the flow field around the airfoil is analyzed and a perceptible influence is found. Within the range of inflow scales studied decreasing scales augment the receptivity of the boundary layer promoting an earlier transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. N = support of the filter.

References

  1. Hain, R., Kähler, C. J., Radespiel, R.: Dynamics of laminar separation bubbles at low-Reynolds number aerofoils. J. Fluid Mech. 630, 129–153 (2009)

    Article  Google Scholar 

  2. Windte, J., Scholz, U., Radespiel, R.: Validation of the RANS-simulation of laminar separation bubbles on airfoils. Aerospace Science Technology 10, 484–494 (2006)

    Article  Google Scholar 

  3. Ol, M. V., McAuliffe, B. R., Hanff, E. S., Scholz, U., Kähler, C.: Comparison of laminar separation bubble measurements on a low-Reynolds number airfoil in three facilities. In: 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario, Canada, June 6–9, 2005 (2005)

  4. Burgmann, S., Dannemann, J., Schröder, W.: Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp. Fluids 44, 609–622 (2008)

    Article  Google Scholar 

  5. Burgmann, S., Schröder, W.: Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp. Fluids 45, 675–691 (2008)

    Article  Google Scholar 

  6. Loxton, B.: An Experimental Investigation into the Effects of Atmospheric Turbulence on the Aerodynamics of Micro Air Vehicle Wings. Ph.D. Thesis, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia (2011)

  7. Ravi, S., Watkins, S., Watmuff, J., Massey, K., Petersen, P., Marino, M., Ravi, A.: The flow over a thin airfoil subjected to elevated levels of freestream turbulence at low Reynolds numbers. Exp. Fluids 53(3), 637–653 (2012). https://doi.org/10.1007/s00348-012-1316-2

    Article  Google Scholar 

  8. Fisher, A. M.: The Effect of Freestream Turbulence on Fixed and Flapping Micro Air Vehicle Wings. Ph.D. thesis, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia (2013)

  9. Herbst, S., Kähler, C., Hain, R.: SD7003 airfoil in large-scale free stream turbulence. In: 35th AIAA Applied Aerodynamics Conference, AIAA AVIATION Forum, (AIAA 2017-3748), June 5–9, 2017. Denver, CO (2017)

  10. Reshotko, E.: Boundary-layer stability and transition. Ann. Rev. Fluid Mech. 8, 311–349 (1976)

    Article  Google Scholar 

  11. Reshotko, E.: Transient growth: A factor in bypass transition. Phys. Fluids 13 (5), 1067–1075 (2001)

    Article  MathSciNet  Google Scholar 

  12. Ceyhan, O., Pires, O., Munduate, X., Sorensen, N., Reichstein, T., Schaffarczyk, A. P., Diakakis, K., Papadakis, G., Daniele, E., Schwarz, M., Lutz, T., Prieto, P.: Summary of the blind test campaign to predict the high Reynolds number performance of DU00-W-210 airfoil. In: 35th Wind Energy Symposium, AIAA Scitech Forum, (AIAA 2017-0915). Grapevine, Texas, USA. https://doi.org/10.2514/6.2017-0915(2017)

  13. Schaffarczyk, A. P., Schwab, D., Breuer, M.: Experimental detection of laminar-turbulent transition on a rotating wind turbine blade in the free atmosphere. Wind Energy 20, 211–220 (2017). https://doi.org/10.1002/we.2001

    Article  Google Scholar 

  14. Radespiel, R., Windte, J., Scholz, U.: Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles. AIAA J. 45(6), 1346–1356 (2007)

    Article  Google Scholar 

  15. Schmidt, S., Breuer, M.: Hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded internal and external flows. Comput. Fluids 96, 226–252 (2014). https://doi.org/10.1016/j.compfluid.2014.03.020

    Article  MathSciNet  MATH  Google Scholar 

  16. Schmidt, S., Breuer, M.: Source term based synthetic turbulence inflow generator for eddy-resolving predictions of an airfoil flow including a laminar separation bubble. Comput. Fluids 146, 1–22 (2017). https://doi.org/10.1016/j.compfluid.2016.12.023

    Article  MathSciNet  MATH  Google Scholar 

  17. Schmidt, S., Breuer, M.: Application and extension of a synthetic turbulence inflow generator within a hybrid LES-URANS methodology. In: Grigoriadis, D., Geurts, B., Kuerten, H., Fröhlich, J., Armenio, V. (eds.) ERCOFTAC Series, Direct and Large-Eddy Simulation X, 10th Int. ERCOFTAC Workshop on Direct and Large-Eddy Simulation: DLES-10, Limassol, Cyprus, May 27–29, 2015. https://doi.org/10.1007/978-3-319-63212-4_7, vol. 24, pp 63–69. Springer Int. Publishing AG (2018)

    Google Scholar 

  18. Visbal, M. R., Gordnier, R. E., Galbraith, M. C.: High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers. Exp. Fluids 46, 903–922 (2009)

    Article  Google Scholar 

  19. Breuer, M.: Large-eddy simulation of the sub-critical flow past a circular cylinder: Numerical and modeling aspects. Int. J. Numer. Meth. Fluids 28(9), 1281–1302 (1998)

    Article  Google Scholar 

  20. Breuer, M.: A challenging test case for large-eddy simulation: High Reynolds number circular cylinder flow. Int. J. Heat Fluid Flow 21(5), 648–654 (2000)

    Article  Google Scholar 

  21. Breuer, M.: Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Universität Erlangen-Nürnberg, Berichte aus der Strömungstechnik. Shaker Verlag, Aachen (2002)

    Google Scholar 

  22. Stone, H. L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Num. Anal. 5, 530–558 (1968)

    Article  MathSciNet  Google Scholar 

  23. Rhie, C. M., Chow, W. L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  Google Scholar 

  24. Germano, M., Piomelli, U., Moin, P., Cabot, W. H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  Google Scholar 

  25. Lilly, D. K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  26. Tabor, G., Baba-Ahmadi, M.: Inlet conditions for large-eddy simulation: A review. Comput. Fluids 39, 553–567 (2010)

    Article  MathSciNet  Google Scholar 

  27. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially-developing direct numerical or large-eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  Google Scholar 

  28. Lund, T. S., Wu, X., Squires, K. D.: Generation of turbulent inflow inlet data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)

    Article  MathSciNet  Google Scholar 

  29. Kempf, A., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)

    Article  MathSciNet  Google Scholar 

  30. Schmidt, S., Breuer, M.: Extended synthetic turbulence inflow generator within a hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded flows. J. Flow Turbul. Combust. 95(4), 669–707 (2015). https://doi.org/10.1007/s10494-015-9639-8

    Article  Google Scholar 

  31. Schmidt, S.: Entwicklung einer hybriden LES-URANS Methode für interne und externe Strömungen. Ph.D. Thesis, Professur für Strömungsmechanik, Helmut-Schmidt-Universität, Hamburg, Germany (2016)

  32. De Nayer, G., Schmidt, S., Wood, J. N., Breuer, M.: Enhanced injection method for synthetically generated turbulence within the flow domain of eddy-resolving simulations. Computers and Mathematics with Applications. Available online (2018). https://doi.org/10.1016/j.camwa.2017.12.012

    Article  MathSciNet  Google Scholar 

  33. Selig, M., Guglielmo, J., Broeren, A., Giguére, P.: Summary of Low-Speed Airfoil Data, vol. 1. SoarTech Publications, Virginia Beach (1995)

    Google Scholar 

  34. Galbraith, M. C.: Implicit Large-Eddy Simulation of Low-Reynolds Number Transitional Flow Past the SD7003 Airfoil. Master’s thesis, University of Cincinnati, USA (2009)

  35. Piomelli, U., Chasnov, J. R.: Large-Eddy simulations: Theory and applications. In: Hallbäck, M., Henningson, D., Johansson, A., Alfredson, P. (eds.) Turbulence and Transition Modeling, pp 269–331. Kluwer (1996)

  36. Mohamed, M. S., Larue, J. C.: The decay power law in grid-generated turbulence. J. Fluid Mechanics 219, 195–214 (1990)

    Article  Google Scholar 

  37. Roach, P. E.: The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow 8(2), 82–92 (1987)

    Article  Google Scholar 

  38. Yuan, W., Khalid, M., Windte, J., Scholz, U., Radespiel, R.: An investigation of low-Reynolds number flows past airfoils. In: 23Rd AIAA Applied Aerodynamics Conference, Toronto, Ontario, Canada, June 6–9 (2005)

  39. Lang, M., Rist, U., Wagner, S.: Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Exp. Fluids 36, 43–52 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks M. Klein (Universität der Bundeswehr München) for providing the original source code of the digital filter based inflow procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Breuer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breuer, M. Effect of Inflow Turbulence on an Airfoil Flow with Laminar Separation Bubble: An LES Study. Flow Turbulence Combust 101, 433–456 (2018). https://doi.org/10.1007/s10494-017-9890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9890-2

Keywords

Navigation