Skip to main content
Log in

Modeling an increase in the lift and aerodynamic efficiency of a thick Göttingen airfoil with optimum arrangement

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow line have been numerically solved jointly with the energy equation. The obtained solution has been used to calculate subsonic flow (at M = 0.05 and 5° angle of attack) past a thick (24% chord) Göttingen airfoil with variable arrangement of a small-sized (about 10% chord) circular vortex cell with fixed distributed suction Cq = 0.007 from the surface of a central body. It is established that the optimum arrangement of the vortex cell provides a twofold decrease in the bow drag coefficient Cx, a threefold increase in the lift coefficient Cy, and an about fivefold increase in the aerodynamic efficiency at Re = 105 in comparison to the smooth airfoil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Petrov, Energy Methods for Increasing the Lift of Airfoil (Fizmatlit Moscow, 2011) [in Russian].

    Google Scholar 

  2. A. I. Savitsky, L. N. Schukin, V. G. Karelin, et al., US Patent no. 5417391 (May 23, 1995); preceded by RF Patent no. 2015941 (1991).

  3. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, J. Eng. Phys. Thermophys. 72 (3), 550 (1999).

    Article  MATH  Google Scholar 

  4. A. Isaev, A. G. Sudakov, P. A. Baranov, and Yu. S. Prigorodov, Dokl. Phys. 46 (3), 199 (2001).

    Article  ADS  Google Scholar 

  5. Control of the Flow past Bodies with Vortex Cells as Applied to Integral-Layout Flight Vehicles (Numerical and Physical Modeling), Ed. by A. V. Ermishin and S. A. Isaev (MGU Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  6. S. A. Isaev, P. A. Baranov, N. A. Kudryavtsev, I. A. Pyshnyi, and A. G. Sudakov, J. Eng. Phys. Thermophys. 76 (4), 877 (2003).

    Article  Google Scholar 

  7. P. A. Baranov, S. A. Isaev, Yu. S. Prigorodov, and A. G. Sudakov, Fluid Dyn. 38 (3), 387 (2003).

    Article  MATH  Google Scholar 

  8. S. A. Isaev, P. A. Baranov, A. G. Sudakov, and V. B. Kharchenko, Thermophys. Aeromech. 14 (2), 169 (2007).

    Article  ADS  Google Scholar 

  9. S. A. Isaev, A. G. Sudakov, P. A. Baranov, and N. A. Mordinsky, J. Eng. Phys. Thermophys. 80 (6), 1193 (2007).

    Article  MATH  Google Scholar 

  10. F. De Gregorio and G. Fraioli, Proceedings of the 14th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (July 7–10, 2008, Lisbon, Portugal), pp. 1–12.

  11. S. A. Isaev, P. A. Baranov, A. G. Sudakov, and A. E. Usachov, Tech. Phys. Lett. 40 (5), 417 (2014).

    Article  ADS  Google Scholar 

  12. F. R. Menter, M. Kuntz, and R. Langtry, in Turbulence, Heat and Mass Transfer 4, Ed. by K. Hanjalic, Y. Nogano, and M. Tummers (Begell House Inc., 2003).

  13. S. A. Isaev, P. A. Baranov, and A. E. Usachov, Multiblock Computational Technologies in VP2/3 Aerothermodynamics Program Package (Lambert Academic Publishing Saarbrucken, 2013).

    Google Scholar 

  14. S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. E. Usachov, and V. B. Kharchenko, J. Eng. Phys. Thermophys. 87 (4), 1002 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Isaev.

Additional information

Original Russian Text © S.A. Isaev, A.G. Sudakov, A.E. Usachov, V.B. Kharchenko, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 11, pp. 103–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, S.A., Sudakov, A.G., Usachov, A.E. et al. Modeling an increase in the lift and aerodynamic efficiency of a thick Göttingen airfoil with optimum arrangement. Tech. Phys. Lett. 41, 561–564 (2015). https://doi.org/10.1134/S1063785015060061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785015060061

Keywords

Navigation