Skip to main content
Log in

Drought Stress and Leaf Herbivory Affect Root Terpenoid Concentrations and Growth of Tanacetum vulgare

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plant responses of both shoots and roots to combined abiotic and biotic stress have been rarely investigated. However, stresses such as drought and aboveground herbivory might lead to conflicting resource allocation patterns and pronounced shifts in shoot vs. root defenses. In the present study, the effects of water availability and leaf herbivory by caterpillars of a generalist on various shoot and root traits of the aromatic plant Tanacetum vulgare L. were investigated. This species contains terpenoids in leaves and roots, which can differ in composition among individuals, forming so-called chemotypes. To test for intraspecific variation, responses were investigated in two chemotypes, the thujone and the carvyl acetate chemotype. Furthermore, effects of differences in plant quality on the herbivores were studied. Shoot biomass significantly decreased due to drought and herbivory, whereas the root/shoot ratio increased following drought but was unaffected by herbivory. No shifts in C/N ratios were found. In contrast to our expectation, leaf terpenoid concentrations decreased only slightly due to drought, whereas root terpenoids were significantly induced by both drought and herbivory. Chemotypes showed distinct responses to drought at least in the root/shoot ratio, with a higher drought sensitivity of the carvyl acetate chemotype. The body mass of the caterpillars was unaffected by the irrigation treatment but depended on chemotype and terpenoid concentration of the plants. Thus, both qualitative and quantitative defenses strongly affect herbivore development. The present results offer new insights into the above- and belowground organ-specific responses of plants. They highlight the importance of roots in response to various environmental challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil composition by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Ait Said S, Fernandez C, Greff S, Derridj A, Gauquelin T, Mevy J-P (2011) Inter-population variability of leaf morpho-anatomical and terpenoid patterns of Pistacia atlantica Desf. ssp. atlantica growing along an aridity gradient in Algeria. Flora 206:397–405

    Article  Google Scholar 

  • Asensio D, Rapparini F, Peñuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149–161

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    Article  PubMed  Google Scholar 

  • Bezemer TM, Wagenaar R, van Dam NM, Wäckers FL (2003) Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562

    Article  Google Scholar 

  • Bezemer TM, Wagenaar R, van Dam NM, van der Putten WH, Wäckers FL (2004) Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J Chem Ecol 30:53–67

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought - from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed Central  PubMed  Google Scholar 

  • Delfine S, Loreto F, Pinelli P, Tognetti R, Alvino A (2005) Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agric Ecosyst Environ 106:243–252

    Article  CAS  Google Scholar 

  • El-Soda M, Boer MP, Bagheri H, Hanhart CJ, Koornneef M, Aarts MGM (2014) Genotype–environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes. J Exp Bot 65:697–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erb M, Lu J (2013) Soil abiotic factors influence interactions between belowground herbivores and plant roots. J Exp Bot 64:1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Ferrieri AP, Agtuca B, Appel HM, Ferrieri RA, Schultz JC (2013) Temporal changes in allocation and partitioning of new carbon as 11C elicited by simulated herbivory suggest that roots shape aboveground responses in arabidopsis. Plant Physiol 161:692–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  PubMed  Google Scholar 

  • Grinnan R, Carter T Jr, Johnson MJ (2013) Effects of drought, temperature, herbivory, and genotype on plant–insect interactions in soybean (Glycine max). Arthropod Plant Interact 7:201–215

    Article  Google Scholar 

  • Grüner C, Masaki S (1994) Summer diapause in the polymorphic life cycle of the noctuid moth Mamestra brassicae. In: Danks HV (ed) Insect life-cycle polymorphism Vol. 52. Springer, Netherlands, pp 191–204

    Chapter  Google Scholar 

  • Gutbrodt B, Mody K, Dorn S (2011) Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 120:1732–1740

    Article  CAS  Google Scholar 

  • Gutbrodt B, Dorn S, Mody K (2012) Drought stress affects constitutive but not induced herbivore resistance in apple plants. Arthropod Plant Interact 6:171–179

    Article  Google Scholar 

  • Gzik A (1996) Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 36:29–38

    Article  CAS  Google Scholar 

  • Haugen R, Steffes L, Wolf J, Brown P, Matzner S, Siemens DH (2008) Evolution of drought tolerance and defense: dependence of tradeoffs on mechanism, environment and defense switching. Oikos 117:231–244

    Article  Google Scholar 

  • Heath JJ, Kessler A, Woebbe E, Cipollini D, Stireman JO III (2014) Exploring plant defense theory in tall goldenrod, Solidago altissima. New Phytol 202:1357–1370

    Article  PubMed  Google Scholar 

  • Heil M (2010) Plastic defence expression in plants. Evol Ecol 24:555–569

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular 347:1–32

  • Hol GWH, Macel M, van Veen JA, van der Meijden E (2004) Root damage and aboveground herbivory change concentration and composition of pyrrolizidine alkaloids of Senecio jacobaea. Basic Appl Ecol 5:253–260

    Article  CAS  Google Scholar 

  • Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z-F (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Huber DPW, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J (2005) Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiol 25:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Huberty AF, Denno RF (2004) Plant water stress add its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398

    Article  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF (2008) Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89:392–406

    Article  PubMed  Google Scholar 

  • Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25:339–347

    Article  Google Scholar 

  • Kleine S, Müller C (2011) Intraspecific plant chemical diversity and its relation to herbivory. Oecologia 166:175–186

    Article  PubMed  Google Scholar 

  • Kleine S, Müller C (2013) Differences in shoot and root terpenoid profiles and plant responses to fertilisation in Tanacetum vulgare. Phytochemistry 96:123–131

    Article  CAS  PubMed  Google Scholar 

  • Kováts E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen.1. Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 7:1915–1923

    Article  Google Scholar 

  • Kutyniok M, Müller C (2012) Crosstalk between above- and belowground herbivores is mediated by minute metabolic responses of the host Arabidopsis thaliana. J Exp Bot 63:6199–6210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kutyniok M, Müller C (2013) Plant-mediated interactions between shoot-feeding aphids and root-feeding nematodes depend on nitrate fertilization. Oecologia 173:1367–1377

    Article  PubMed  Google Scholar 

  • Larsson S (1989) Stressful times for the plant stress: insect performance hypothesis. Oikos 56:277–283

    Article  Google Scholar 

  • Litvak ME, Monson RK (1998) Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540

    Article  Google Scholar 

  • Lokki J, Sorsa M, Forsén KAJ, Schantz MV (1973) Genetics of monoterpenes in Chrysanthemum vulgare. Hereditas 74:225–232

    Article  CAS  Google Scholar 

  • Machado RAR, Ferrieri AP, Robert CAM, Glauser G, Kallenbach M, Baldwin IT, Erb M (2013) Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytol 200:1234–1246

    Article  CAS  PubMed  Google Scholar 

  • Metz J, Ribbers K, Tielbörger K, Müller C (2014) Long- and medium-term effects of aridity on the chemical defence of a widespread Brassicaceae in the Mediterranean. Environ Exp Bot 105:39–45

    Article  CAS  Google Scholar 

  • Mody K, Eichenberger D, Dorn S (2009) Stress magnitude matters: different intensities of pulsed water stress produce non-monotonic resistance responses of host plants to insect herbivores. Ecol Entomol 34:133–143

    Article  Google Scholar 

  • Nielsen JA, Whigham PA, Frew RD, Callaway RM, Dickinson KJM (2014) Invasion essentials: does secondary chemistry plasticity contribute to the invasiveness of Thymus vulgaris L.? Chemoecology 24:15–27

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner M (2013) Vegan: community ecology package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan

  • Opitz S, Kunert G, Gershenzon J (2008) Increased terpenoid accumulation in cotton (Gossypium hirsutum) foliage is a general wound response. J Chem Ecol 34:508–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orians C, Thorn A, Gómez S (2011) Herbivore-induced resource sequestration in plants: why bother? Oecologia 167:1–9

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) NLME: linear and nonlinear mixed effects models. R package version 3.1-117, http://CRAN.R-project.org/package=nlme

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Sampedro L, Moreira X, Llusia J, Peñuelas J, Zas R (2010) Genetics, phosphorus availability, and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species. J Exp Bot 61:4437–4447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    Article  CAS  Google Scholar 

  • Scheirs J, de Bruyn L (2005) Plant-mediated effects of drought stress on host preference and performance of a grass miner. Oikos 108:371–385

    Article  Google Scholar 

  • Schmitz G (1996) Phytophagenkomplexe von Artemisia vulgaris L. und Tanacetum vulgare L. (Asteraceae) und deren Beeinflussung durch zunehmende Urbanität der Standorte. PhD Thesis, Rheinische Friedrich-Wilhelms-Universität. Bonn, pp. 189

  • Selmar D, Kleinwächter M (2013) Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol 54:817–826

    Article  CAS  PubMed  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Sudha G, Ravishankar GA (2002) Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ Cult 71:181–212

    Article  CAS  Google Scholar 

  • Tariq M, Wright DJ, Rossiter JT, Staley JT (2012) Aphids in a changing world: testing the plant stress, plant vigour and pulsed stress hypotheses. Agric For Entomol 14:177–185

    Article  Google Scholar 

  • Tariq M, Rossiter J, Wright D, Staley J (2013a) Drought alters interactions between root and foliar herbivores. Oecologia 172:1095–1104

    Article  PubMed  Google Scholar 

  • Tariq M, Wright DJ, Bruce TJA, Staley JT (2013b) Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals. PLoS One 8:e69013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Gauthier P, Amiot J, Ehlers BK, Collin C, Fossat J, Barrios V, Arnaud-Miramont F, Keefover-Uesugi A, Poelman E, Kessler A (2013) A test of genotypic variation in specificity of herbivore-induced responses in Solidago altissima L. (Asteraceae). Oecologia 173:1387–1396

    Article  Google Scholar 

  • Uesugi A, Poelman EH, Kessler A (2013) A test of genotypic variation in specificity of herbivore-induced responses in Solidago altissima L. (Asteraceae). Oecologia 173:1387–1396

  • van Dam NM (2009) How plants cope with biotic interactions. Plant Biol 11:1–5

    PubMed  Google Scholar 

  • van Geem M, Gols R, van Dam NM, van der Putten WH, Fortuna T, Harvey JA (2013) The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits. Front Plant Sci 4:431

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang M, Biere A, van der Putten W, Bezemer TM (2014) Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance. Oecologia 175:187–198

  • White DJ (1997) Tanacetum vulgare L.: Weed potential, biology, response to herbivory, and prospects for classical biological control. In: University of Alberta, Alberta

  • White JW, Castillo JA (1989) Relative effect of root and shoot genotypes on yield of common bean under drought stress. Crop Sci 29:360–362

    Article  Google Scholar 

  • Wolf V, Berger U, Gassmann A, Müller C (2011) High chemical diversity of a plant species is accompanied by increased chemical defence in invasive populations. Biol Invasions 13:2091–2102

    Article  Google Scholar 

  • Wolf VC, Gassmann A, Müller C (2012) Choice behaviour and performance of Cassida stigmatica on various chemotypes of Tanacetum vulgare and implications for biocontrol. Entomol Exp Appl 144:78–85

    Article  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Yadav RK, Sangwan RS, Sabir F, Srivastava AK, Sangwan NS (2014) Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol Biochem 74:70–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Joop van Loon (Wageningen University) for providing eggs of M. brassicae. Rabea Schweiger is thanked for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleine, S., Müller, C. Drought Stress and Leaf Herbivory Affect Root Terpenoid Concentrations and Growth of Tanacetum vulgare . J Chem Ecol 40, 1115–1125 (2014). https://doi.org/10.1007/s10886-014-0505-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0505-2

Keywords

Navigation