Skip to main content
Log in

Plant-Soil Feedbacks and Soil Sickness: From Mechanisms to Application in Agriculture

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Negative plant-soil feedbacks play an important role in soil sickness, which is one of the factors limiting the sustainable development of intensive agriculture. Various factors, such as the buildup of pests in the soil, disorder in physico-chemical soil properties, autotoxicity, and other unknown factors may contribute to soil sickness. A range of autotoxins have been identified, and these exhibit their allelopathic potential by influencing cell division, water and ion uptake, dark respiration, ATP synthesis, redox homeostasis, gene expression, and defense responses. Meanwhile, there are great interspecific and intraspecific differences in the uptake and accumulation of autotoxins, which contribute to the specific differences in growth in response to different autotoxins. Importantly, the autotoxins also influence soil microbes and vice versa, leading to an increased or decreased degree of soil sickness. In many cases, autotoxins may enhance soilborne diseases by predisposing the roots to infection by soilborne pathogens through a direct biochemical and physiological effect. Some approaches, such as screening for low autotoxic potential and disease-resistant genotypes, proper rotation and intercropping, proper soil and plant residue management, adoption of resistant plant species as rootstocks, introduction of beneficial microbes, physical removal of phytotoxins, and soil sterilization, are proposed. We discuss the challenges that we are facing and possible approaches to these.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asaduzzaman, M. and Asao, T. 2012. Autotoxicity in beans and their allelochemicals. Sci Hortic-Amsterdam 134:26–31.

    Article  CAS  Google Scholar 

  • Asaduzzaman, M., Kobayashi, Y., Isogami, K., Tokura, M., Tokumasa, K., and Asao, T. 2012. Growth and yield recovery in strawberry plants under autotoxicity through electrodegradation. Eur. J. Hortic. Sci. 77:58–67.

    CAS  Google Scholar 

  • Asao, T., Shimizu, N., Ohta, K., and Hosoki, T. 1999. Effect of rootstocks on the extension of harvest period of cucumber (Cucumis sativus L.) grown in non-renewal hydroponics. J. Jpn. Soc. Hortic. Sci. 68:598–602.

    Article  Google Scholar 

  • Asao, T., Hasegawa, K., Sueda, Y., Tomita, K., Taniguchi, K., Hosoki, T., Pramanik, M. H. R., and Matsui, Y. 2003. Autotoxicity of root exudates from taro. Sci Hortic-Amsterdam 97:389–396.

    Article  CAS  Google Scholar 

  • Asao, T., Kitazawa, H., Ban, T., Pramanik, M. H. R., Matsui, Y., and Hosoki, T. 2004a. Search of autotoxic substances in some leaf vegetables. J. Jpn. Soc. Hortic. Sci. 73:247–249.

    Article  CAS  Google Scholar 

  • Asao, T., Kitazawa, H., Tomita, K., Suyama, K., Yamamoto, H., Hosoki, T., and Pramanik, M. H. R. 2004b. Mitigation of cucumber autotoxicity in hydroponic culture using microbial strain. Sci Hortic-Amsterdam 99:207–214.

    Article  Google Scholar 

  • Benizri, E., Piutti, S., Verger, S., Pages, L., Vercambre, G., Poessel, J. L., and Michelot, P. 2005. Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem. 37:1738–1746.

    Article  CAS  Google Scholar 

  • Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Besserer, A., Puech-Pagés, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J. C., Roux, C., Bécard, G., and Séjalon-Delmas, N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4:e226.

    Article  PubMed  CAS  Google Scholar 

  • Bever, J. D., Dickie, I. A., Facelli, E., Facelli, J. M., Klironomos, J., Moora, M., Rillig, M. C., Stock, W. D., Tibbett, M., and Zobel, M. 2010. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25:468–478.

    Article  PubMed  Google Scholar 

  • Blum, U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685–708.

    Article  CAS  Google Scholar 

  • Blum, U., Staman, K. L., Flint, L. J., and Shafer, S. R. 2000. Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26:2059–2078.

    Article  CAS  Google Scholar 

  • Börner, H. 1959. The apple replant problem. I. The excretion of phlorizin from apple root residues. Contributions of the Boyce Thompson Institute 20:39–56.

    Google Scholar 

  • Börner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. 26:393–424.

    Article  Google Scholar 

  • Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F. O., Amann, R., Eickhorst, T., and Schulze-Lefert, P. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95.

    Article  PubMed  CAS  Google Scholar 

  • Burger, W. P. and Small, J. G. C. 1983. Allelopathy in citrus orchards. Sci Hortic-Amsterdam 20:361–375.

    Article  CAS  Google Scholar 

  • Caboun, V. 2005. Soil sickness in forestry trees. Allelopath. J. 16:199–208.

    Google Scholar 

  • Canals, R. M., Emeterio, L. S., and Peralta, J. 2005. Autotoxicity in Lolium Rigidum: Analyzing the role of chemically mediated interactions in annual plant populations. J. Theor. Biol. 235:402–407.

    Article  PubMed  CAS  Google Scholar 

  • Cao, P. R., Liu, C. Y., and Li, D. 2011. Autointoxication of tea (Camellia sinensis) and identification of its autotoxins. Allelopath. J. 28:155–165.

    Google Scholar 

  • Carter, M. R. and Sanderson, J. B. 2001. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil Tillage Res. 63:1–13.

    Article  Google Scholar 

  • Caspersen, S., Alsanius, B. W., Sundin, P., and Jensen, P. 2000. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.). Soil Biol. Biochem. 32:1063–1070.

    Article  CAS  Google Scholar 

  • Chen, L. H., Yang, X. M., Raza, W., Li, J. H., Liu, Y. X., Qiu, M. H., Zhang, F. G., and Shen, Q. R. 2011a. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl. Microbiol. Biotechnol. 89:1653–1663.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S. L., Zhou, B. L., Lin, S. S., Li, X., and Ye, X. L. 2011b. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. Afr. J. Biotechnol. 10:2659–2665.

    CAS  Google Scholar 

  • Chon, S. U., Choi, S. K., Jung, S., Jang, H. G., Pyo, B. S., and Kim, S. M. 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21:1077–1082.

    Article  CAS  Google Scholar 

  • Chou, C. H. 1999. Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit. Rev. Plant Sci. 18:609–636.

    Article  Google Scholar 

  • Chou, C. H. and Lin, H. J. 1976. Autointoxication mechanisms of Oryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2:353–367.

    Article  CAS  Google Scholar 

  • Chou, C. H. and Waller, G. R. 1980. Possible allelopathic constituents of Coffea arabica. J. Chem. Ecol. 6:643–654.

    Article  CAS  Google Scholar 

  • Chung, I. M., Seigler, D., Miller, D. A., and Kyung, S. H. 2000. Autotoxic compounds from fresh alfalfa leaf extracts: Identification and biological activity. J. Chem. Ecol. 26:315–327.

    Article  CAS  Google Scholar 

  • Cohen, M. F., Yamasaki, H., and Mazzola, M. 2005. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of rhizoctonia root rot. Soil Biol. Biochem. 37:1215–1227.

    Article  CAS  Google Scholar 

  • Dayan, F. E. 2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224:339–346.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J., Sun, Y., Xiao, C. L., Shi, K., Zhou, Y. H., and Yu, J. Q. 2007. Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J. Exp. Bot. 58:3765–3773.

    Article  PubMed  CAS  Google Scholar 

  • Dornbos, D. L., Spencer, G. F., and Miller, R. W. 1990. Medicarpin delays alfalfa seed-germination and seedling growth. Crop Sci. 30:162–166.

    Article  CAS  Google Scholar 

  • Farooq, M., Jabran, K., Cheema, Z. A., Wahid, A., and Siddique, K. H. 2011. The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506.

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson, J. K. and Elliott, L. F. 1985. Effects on winter-wheat seedling growth by toxin-producing rhizobacteria. Plant Soil 83:399–409.

    Article  Google Scholar 

  • Garbeva, P., van Veen, J. A., and van Elsas, J. D. 2004. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243–270.

    Article  PubMed  CAS  Google Scholar 

  • Gog, L., Berenbaum, M. R., Delucia, E. H., and Zangerl, A. R. 2005. Autotoxic effects of essential oils on photosynthesis in parsley, parsnip, and rough lemon. Chemoecology 15:115–119.

    Article  CAS  Google Scholar 

  • Grodzinsky, A. M. 2006. Allelopathy in Soil Sickness. Scientific Publishers, Jodhpur.

    Google Scholar 

  • Gu, Y. H. and Mazzola, M. 2003. Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl. Soil Ecol. 24:57–72.

    Article  Google Scholar 

  • Guenzi, W. D. and Mccalla, T. M. 1966. Phytotoxic substances extracted from soil. Soil Sci. Soc. Am. Pro 30:214–216.

    Article  CAS  Google Scholar 

  • Hartung, A. C. and Stephens, C. T. 1983. Effects of allelopathic substances produced by asparagus on incidence and severity of asparagus decline due to fusarium crown rot. J. Chem. Ecol. 9:1163–1174.

    Article  Google Scholar 

  • Hartung, A. C., Nair, M. G., and Putnam, A. R. 1990. Isolation and characterization of phytotoxic compounds from asparagus (Asparagus officinalis L) roots. J. Chem. Ecol. 16:1707–1718.

    Article  CAS  Google Scholar 

  • He, C. N., Gao, W. W., Yang, J. X., Bi, W., Zhang, X. S., and Zhao, Y. J. 2009. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318:63–72.

    Article  CAS  Google Scholar 

  • Huang, Z. Q., Liao, L. P., and Wang, S. L. 2000. Allelopathy of phenolics from decomposing stump-roots in replant chinese fir woodland. J. Chem. Ecol. 26:2211–2219.

    Article  CAS  Google Scholar 

  • Kardol, P., Bezemer, T. M., and van der Putten, W. H. 2006. Temporal variation in plant-soil feedback controls succession. Ecol. Lett. 9:1080–1088.

    Article  PubMed  Google Scholar 

  • Kato-noguchi, H. and Peters, R. 2013. The role of momilactones in rice allelopathy. J. Chem. Ecol., this issue.

  • Kaur, H., Kaur, R., Kaur, S., Baldwin, I. T., and Inderjit 2009. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE 4(3).

  • Kennedy, A. C. 1999. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74(1–3):65–76.

    Article  Google Scholar 

  • Khare, E. and Arora, N. K. 2010. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr. Microbiol. 61:64–68.

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa, H., Asao, T., Ban, T., Pramanik, M. H. R., and Hosoki, T. 2005. Autotoxicity of root exudates from strawberry in hydroponic culture. J. Hortic. Sci. Biotechnol. 80:677–680.

    Google Scholar 

  • Klironomos, J. N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70.

    Article  PubMed  CAS  Google Scholar 

  • Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., Ritchie, M. E., Howe, K. M., Reich, P. B., Siemann, E., et al. 1999. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2:286–293.

    Article  Google Scholar 

  • Komada, H. 1988. The Occurrence, Ecology of Soil-Borne Diseases and Their Control. Takii Seed Co. Ltd, Japan. in Japanese.

    Google Scholar 

  • Kong, C. H., Chen, L. C., Xu, X. H., Wang, P., and Wang, S. L. 2008. Allelochemicals and activities in a replanted chinese fir (Cunninghamia lanceolata (Lamb.) Hook) tree ecosystem. J. Agric. Food Chem 56:11734–11739.

    Article  PubMed  CAS  Google Scholar 

  • Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H., and Martijn Bezemer, T. 2012. Legacy effects of aboveground-belowground interactions. Ecol. Lett 15:813–821.

    Article  PubMed  Google Scholar 

  • Kulmatiski, A., Beard, K. H., Stevens, J. R., and Cobbold, S. M. 2008. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11:980–992.

    Article  PubMed  Google Scholar 

  • Larkin, R. P. 2003. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 35:1451–1466.

    Article  CAS  Google Scholar 

  • Li, Z. F., Yang, Y. Q., Xie, D. F., Zhu, L. F., Zhang, Z. G., and Lin, W. X. 2012. Identification of autotoxic compounds in fibrous roots of rehmannia (Rehmannia glutinosa Libosch.). PLoS ONE 7(1):e28806. doi:10.1371/journal.pone.0028806.

  • Li, C., Li, X., Kong, W., Wu, Y., and Wang, J. 2010. Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330:423–433.

    Article  CAS  Google Scholar 

  • Lodhi, M. A. K., Bilal, R., and Malik, K. A. 1987. Allelopathy in agroecosystems—wheat phytotoxicity and its possible roles in crop-rotation. J. Chem. Ecol. 13:1881–1891.

    Article  CAS  Google Scholar 

  • Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T. G. D., Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Tringe, S. G., and Dangl, J. L. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90.

    Article  PubMed  CAS  Google Scholar 

  • Mangla, S., Inderjit, and Callaway, R. M. 2008. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol 96:58–67.

    Google Scholar 

  • Mazzola, M. 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. Anton Leeuw Int JG 81:557–564.

    Article  CAS  Google Scholar 

  • Mazzola, M. and Gu, Y. H. 2000. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology 90:114–119.

    Article  PubMed  CAS  Google Scholar 

  • Mazzola, M., Granatstein, D. M., Elfving, D. C., and Mullinix, K. 2001. Suppression of specific apple root pathogens by Prassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91:673–679.

    Article  PubMed  CAS  Google Scholar 

  • Mazzola, M., Granatstein, D. M., Elfving, D. C., Mullinix, K., and Gu, Y. H. 2002. Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92:1363–1366.

    Article  PubMed  Google Scholar 

  • Mazzola, M., Funnell, D. L., and Raaijmakers, J. M. 2004. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb. Ecol. 48:338–348.

    Article  PubMed  CAS  Google Scholar 

  • Meharg, A. A. and Killham, K. 1995. Loss of exudates from the roots of Perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170:345–349.

    Article  CAS  Google Scholar 

  • Miller, R. W., Kleiman, R., Powell, R. G., and Putnam, A. R. 1988. Germination and growth-inhibitors of Alfalfa. J. Nat. Prod. 51:328–330.

    Article  Google Scholar 

  • Miller, H. G., Ikawa, M., and Peirce, L. C. 1991. Caffeic acid identified as an inhibitory compound in asparagus root filtrate. HortScience 26:1525–1527.

    CAS  Google Scholar 

  • Miyama, Y., Sunada, K., Fujiwara, S., and Hashimoto, K. 2009. Photocatalytic treatment of waste nutrient solution from soil-less cultivation of tomatoes planted in rice hull substrate. Plant Soil 318:275–283.

    Article  CAS  Google Scholar 

  • Nayyar, A., Hamel, C., Lafond, G., Gossen, B. D., Hanson, K., and Germida, J. 2009. Soil microbial quality associated with yield reduction in continuous-pea. Appl. Soil Ecol. 43:115–121.

    Article  Google Scholar 

  • Neal, A. L., Ahmad, S., Gordon-Weeks, R., and Ton, J. 2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. Plos One 7:e35498.

    Article  PubMed  CAS  Google Scholar 

  • Nicol, R. W., Yousef, L., Traquair, J. A., and Bernards, M. A. 2003. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 64:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Ogweno, J. O. and Yu, J. Q. 2006. Autotoxic potential in soil sickness: A re-examination. Allelopathy J. 18:93–101.

    Google Scholar 

  • Patrick, Z. A. 1955. The peach replant problem in Ontario. II. Toxic substances from microbial decomposition products of peach root residues. Can. J. Bot. 33:481–486.

    Article  Google Scholar 

  • Patrick, Z. A. and Koch, L. W. 1958. Inhibition of respiration, germination and growth by substances arising during the decomposition of certain plant residues in the soil. Can. J. Bot. 36:621–647.

    Article  CAS  Google Scholar 

  • Pramanik, M. H. R., Nagai, M., Asao, T., and Matsui, Y. 2000. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 26:1953–1967.

    Article  CAS  Google Scholar 

  • Rice, E. L. 1984. Allelopathy. Academic, New York.

    Google Scholar 

  • Ruan, X., Li, Z. H., Wang, Q., Pan, C. D., Jiang, D. A., and Wang, G. G. 2011. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles. Molecules 16:8874–8893.

    Article  PubMed  CAS  Google Scholar 

  • Russell, E. J. and Petherbridge, F. R. 1912. Investigations on “Sickness” in soil. II. “Sickness” in glasshouse soils. J. Agric. Sci. 5:86–U11.

    Article  Google Scholar 

  • Schippers, B., Bakker, A. W., and Bakker, P. A. H. M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339–358.

    Article  Google Scholar 

  • Schreiner, O. and Reed, H. S. 1907. The production of deleterious excretions by roots. Bull Torrey Bot. Club. 34:279–303.

    Article  Google Scholar 

  • Schreiner, O. and Shorey, E. C. 1909. The isolation of harmful organic substances from soils. U. S. Depart. Agric. Bureau Soils Bull. 53:1–33.

    Google Scholar 

  • Schreiner, O. and Sullivan, M. X. 1909. Soil fatigue caused by organic compounds. J. Biol. Chem. 6:39–50.

    CAS  Google Scholar 

  • Shi, K., Wang, L., Zhou, Y. H., and Yu, J. Q. 2009. Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f. sp cucumberinum. Chemosphere 75:872–877.

    Article  PubMed  CAS  Google Scholar 

  • Shiomi, Y., Nishiyama, M., Onizuka, T., and Marumoto, T. 1999. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl. Environ. Microbiol. 65:3996–4001.

    PubMed  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., and Kohli, R. K. 1999. Autotoxicity: Concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 18:757–772.

    Article  CAS  Google Scholar 

  • Sturz, A. V. and Christie, B. R. 2003. Beneficial microbial allelopathies in the root zone: The management of soil quality and plant disease with rhizobacteria. Soil Till. Res. 72:107–123.

    Article  Google Scholar 

  • Sunada, K., Ding, X. G., Utami, M. S., Kawashima, Y., Miyama, Y., and Hashimoto, K. 2008. Detoxification of phytotoxic compounds by TiO2 photocatalysis in a recycling hydroponic cultivation system of asparagus. J. Agric. Food Chem. 56:4819–4824.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, K. and Wittenmayer, L. 2000. Plant specific root exudations as possible cause for specific replant diseases in rosaceen. J Appl Bot-Angew Bot 74:191–197.

    Google Scholar 

  • Takijima, Y. and Hayashi, T. 1959. Studies on soil sickness in crop. 2. Substances exuded from root and the growth-inhibiting activity of a nutrient solution for crop cultivation. Agric. Hortic 34:1417–1418. in Japanese.

    Google Scholar 

  • Theron, J. and Cloete, T. E. 2000. Molecular techniques for determining microbial diversity and community structure in natural environments. Crit. Rev. Microbiol. 26:37–57.

    Article  PubMed  CAS  Google Scholar 

  • Thevathasan, N. V., Gordon, A. M., and Voroney, R. P. 1998. Juglone (5-hydroxy-1,4 napthoquinone) and soil nitrogen transformation interactions under a walnut plantation in southern Ontario. Canada. Agrofor. Syst. 44:151–162.

    Article  Google Scholar 

  • Validov, S., Mavrodi, O., de la Fuente, L., Boronin, A., Weller, D., Thomashow, L., and Mavrodi, D. 2005. Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. FEMS Microbiol. Lett. 242:249–256.

    Article  PubMed  CAS  Google Scholar 

  • van de Voorde, T. F. J., Ruijten, M., van der Putten, W. H., and Bezemer, T. M. 2012. Can the negative plant-soil feedback of Jacobaea vulgaris be explained by autotoxicity? Basic App. Ecol 13:533–541.

    Article  Google Scholar 

  • Weidenhamer, J., Li, M., Allman, J., Bergosh, R., and Posner, M. 2013. Evidence does not support a role for gallic acid in Phragmites australis invasion success. J. Chem. Ecol., this issue.

  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol 40:309–348.

    Article  PubMed  CAS  Google Scholar 

  • Wu, F. Z., Han, X., and Wang, X. Z. 2006. Allelopathic effect of root exudates of cucumber cultivars on fusarium oxysporum. Allelopathy J. 18:163–172.

    Google Scholar 

  • Wu, F. Z., Wang, X. Z., and Xue, C. Y. 2009. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere. Eur. J. Soil Biol. 45:356–362.

    Article  CAS  Google Scholar 

  • Wu, H. S., Luo, J., Raza, W., Liu, Y. X., Gu, M. A., Chen, G., Hu, X. F., Wang, J. H., Mao, Z. S., and Shen, Q. R. 2010. Effect of exogenously added ferulic acid on in vitro Fusarium oxysporum f. sp niveum. Sci. Hortic-Amsterdam 124:448–453.

    Article  CAS  Google Scholar 

  • Xu, M. M., Galhano, R., Wiemann, P., Bueno, E., Tiernan, M., Wu, W., Chung, I. M., Gershenzon, J., Tudzynski, B., Sesma, A., and Peter, R. J. 2012. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol. 193:570–575.

    Article  PubMed  CAS  Google Scholar 

  • Ye, S. F., Yu, J. Q., Peng, Y. H., Zheng, J. H., and Zou, L. Y. 2004. Incidence of fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143–150.

    Article  CAS  Google Scholar 

  • Ye, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., and Yu, J. Q. 2006. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of fusarium wilt. Environ. Exp. Bot. 56:255–262.

    Article  CAS  Google Scholar 

  • Yu, J. Q. 1999. Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-Chinese chive (Allium tuberosum) intercropping system. J. Chem. Ecol. 25:2409–2417.

    Article  CAS  Google Scholar 

  • Yu, J. Q. and Matsui, Y. 1993. Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. Soil Sci. Plant Nutr. 39:691–700.

    Article  CAS  Google Scholar 

  • Yu, J. Q. and Matsui, Y. 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L). J. Chem. Ecol. 20:21–31.

    Article  CAS  Google Scholar 

  • Yu, J. Q. and Matsui, Y. 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol. 23:817–827.

    Article  CAS  Google Scholar 

  • Yu, J. Q. and Matsui, Y. 1999. Autointoxication of Root Exudates in Pisum sativus. Acta Hort. Sinica 26:175–179.

    Google Scholar 

  • Yu, J. Q., Lee, K. S., and Matsui, Y. 1993. Effect of the addition of activated-charcoal to the nutrient solution on the growth of tomato in hydroponic culture. Soil Sci. Plant Nutr. 39:13–22.

    Article  Google Scholar 

  • Yu, J. Q., Shou, S. Y., Qian, Y. R., Zhu, Z. J., and Hu, W. H. 2000. Autotoxic potential of cucurbit crops. Plant Soil 223:147–151.

    Article  CAS  Google Scholar 

  • Yu, J. Q., Ye, S. F., Zhang, M. F., and Hu, W. H. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31:129–139.

    Article  CAS  Google Scholar 

  • Yu, J. Q., Sun, Y., Zhang, Y., Ding, J., Xia, X. J., Xiao, C. L., Shi, K., and Zhou, Y. H. 2009. Selective trans-cinnamic acid uptake impairs [Ca2+](cyt) homeostasis and growth in Cucumis sativus L. J. Chem. Ecol. 35:1471–1477.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Gu, M., Xia, X. J., Shi, K., Zhou, Y. H., and Yu, J. Q. 2009. Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J. Chem. Ecol. 35:679–688.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Gu, M., Shi, K., Zhou, Y. H., and Yu, J. Q. 2010a. Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L.) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant Soil 327:455–463.

    Article  CAS  Google Scholar 

  • Zhang, Y., Gu, M., Xia, X. J., Shi, K., Zhou, Y. H., and Yu, J. Q. 2010b. Alleviation of autotoxin-induced growth inhibition and respiration by sucrose in Cucumis sativus (L.). Allelopathy J 25:147–154.

    Google Scholar 

  • Zhang, S. S., Jin, Y. L., Zhu, W. J., Tang, J. J., Hu, S. J., Zhou, T. S., and Chen, X. 2010c. Baicalin released from Scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens. J. Chem. Ecol. 36:329–338.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S. S., Zhu, W. J., Wang, B., Tang, J. J., and Chen, X. 2011. Secondary metabolites from the invasive Solidago canadensis L. Accumulation in soil and contribution to inhibition of soil pathogen pythium ultimum. Appl. Soil Ecol. 48:280–286.

    Article  Google Scholar 

  • Zhang, H., Mallik, A., and Zeng, R. 2013. Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): Role of plant volatiles. J. Chem. Ecol., this issue.

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2009CB119000), the National Key Technology R&D Program of China (2011BAD12B04) and the National Natural Science Foundation of China (31272155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Quan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, LF., Song, LX., Xia, XJ. et al. Plant-Soil Feedbacks and Soil Sickness: From Mechanisms to Application in Agriculture. J Chem Ecol 39, 232–242 (2013). https://doi.org/10.1007/s10886-013-0244-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0244-9

Keywords

Navigation