Skip to main content

Organic Amendments to Alleviate Plant Biotic Stress

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

In nature, plants are exposed to many anomalies that cause severe metabolic disturbances and very often an installation of the disease. These anomalies are either climatic (low or high temperatures) or anthropogenic (heavy metals and pesticides) and are called abiotic stresses. In contrast, biotic stress involves a second living being known as a pathogen (fungus, bacterium, mycoplasma, virus, and viroid) or others (mites, insects, mollusks, nematodes, and herbivores). Plants attacked by a pathogen develop complex defense strategies (hypersensitive reaction and acquired systemic resistance) and often effective to cope with the anomaly. The suppressive effects on biotic stress agents, often observed during the use of organic amendments, open up horizons of new perceptions. Some of the living organisms that live in the organic amendments are also known to inhibit soilborne disease and phytopathogenic nematodes. However, it is only gradually that we begin to understand under what conditions they can be developed and following what approach they can be efficient. Different control approaches propose control of biotic stress by the suppressive effect of organic amendments from plant and animal sources such as compost. Nevertheless, not all the organic amendments have the same ability to effectively inhibit biotic stress agents. The variability observed between the effects of different organic amendments is undoubtedly the biggest obstacle to their use on a large scale. In general, the suppressive ability of organic amendments to plant diseases has been linked to their chemical composition, the bioavailability of their nutrients, and their microbial consortium due to both supply of microorganisms and nutritional stimulation of those in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amooaghaie, R., & Golmohammadi, S. (2017). Effect of vermicompost on growth, essential oil, and health of Thymus Vulgaris. Compost Science & Utilization, 25, 166.

    Article  CAS  Google Scholar 

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Google Scholar 

  • Azim, K., Komenane, S., & Soudi, B. (2017a). Agro-environmental assessment of composting plants in Southwestern of Morocco (Souss-Massa Region). International Journal of Recycling of Organic Waste in Agriculture, 6(2), 107–115.

    Article  Google Scholar 

  • Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2017b). Composting parameters and compost quality: A literature review. Organic Agriculture, 8, 141. https://doi.org/10.1007/s13165-017-0180-z.

    Article  Google Scholar 

  • Bonanomi, G., Gaglione, S., Cesarano, G., Sarker, C., Pascale, M., Scala, F., & Zoina, A. (2017). Frequent applications of organic matter to agricultural soil increase Fungistasis. Pedosphere, 27(1), 86–95.

    Article  Google Scholar 

  • Bora, P., Bora, L. C., & Deka, P. C. (2016). Efficacy of substrate based bioformulation of microbial antagonists in the management of bacterial disease of some solanaceous vegetables in Assam. Journal of Biological Control, 30(1), 49–54.

    Article  Google Scholar 

  • Borrego-Benjumea, A., Basallote-Ureba, M. J., Abbasi, P. A., Lazarovits, G., & Melero Vara, J. M. (2014). Effects of incubation temperature on the organic amendment-mediated control of Fusarium wilt of tomato. Annals of Applied Biology, 164, 453–463.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Morales, V. L., Zhang, W., Harvey, R. W., Packman, A. I., Mohanram, A., & Welty, C. (2013). Transport and fate of microbial pathogens in agricultural settings. Critical Reviews in Environmental Science and Technology, 43, 775–893.

    Article  CAS  Google Scholar 

  • Chen, S., Zhao, H., Wang, Z., Zheng, C., Zhao, P., Guan, Z., Qin, H., Liu, A., Lin, X., & Ahammed, G. (2016). Trichoderma harzianum-induced resistance against Fusarium oxysporum involves regulation of nuclear DNA content, cell viability and cell cycle-related genes expression in cucumber roots. European Journal of Plant Pathology, 147(1), 43–53.

    Article  Google Scholar 

  • Cotxarrera, L., Trillas-Gay, M., Steinberg, C., & Alabouvette, C. (2002). Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry, 34(4), 467–476.

    Article  CAS  Google Scholar 

  • Daniel, R. (2005). The metagenomics of soil. Nature Reviews Microbiology, 3(6), 470–478.

    Article  CAS  Google Scholar 

  • De Meyer, G., Bigirimana, J., Elad, Y., & Höfte, M. (1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104, 279–286.

    Article  Google Scholar 

  • Diacono, M., & Montemurro, F. (2010). Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30(2010), 401–422.

    Article  CAS  Google Scholar 

  • Domene, X., Mattana, S., Hanley, K., et al. (2014). Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry, 72, 152–162.

    Article  CAS  Google Scholar 

  • Doni, F., Zain, C., Isahak, A., Fathurrahman, F., Anhar, A., Mohamad, W., Yusoff, W., & Uphoff, N. (2017). A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI Rice Management System. Organic Agriculture, 8, 207. https://doi.org/10.1007/s13165-017-0185-7.

    Article  Google Scholar 

  • Elmer, W. H., & Pignatello, J. J. (2011). Effect of biochar amendments on mycorrhizal associations and fusarium crown and root rot of asparagus in replant soils. Plant Disease, 95, 960–966.

    Article  Google Scholar 

  • Eo, J., Park, K., Kim, M., Kwon, S., & Song, Y. (2017). Effects of rice husk and rice husk biochar on root rot disease of ginseng (Panax ginseng) and on soil organisms. Biological Agriculture and Horticulture, 34, 1–13. https://doi.org/10.1080/01448765.2017.1363660.

    Article  Google Scholar 

  • Faruk, M. I., & Rahman, M. L. (2016). Management of stem and root rot disease of lentil through soil amendment with tricho-compost. International Journal of Scientific Research in Science and Technology, 3(2), 301–308.

    Google Scholar 

  • Faruk, M., & Rahman, M. (2017). Effect of substrates to formulate Trichoderma harzianum based bio-fungicide in controlling seedling disease (Rhizoctonia solani) of brinjal. Bangladesh Journal of Agricultural Research, 42(1), 159–170. https://doi.org/10.3329/bjar.v42i1.31988.

    Article  Google Scholar 

  • Frenkel, O., Jaiswal, A. K., Elad, Y., Lew, B., Kammann, C., & Graber, E. R. (2017). The effect of biochar on plant diseases: What should we learn while designing biochar substrates. Journal of Environmental Engineering and Landscape Management, 25(2), 105–113. https://doi.org/10.3846/16486897.2017.1307202.

    Article  Google Scholar 

  • Garcia-Jimenez, J., Monte, E., & Trapero, A. (2010) Los hongos y oomicetos fitopatógenos. Enfermedades de las plantas causadas por hongos y oomicetos. Naturaleza y control integrado, Phytoma, España, pp 23–50.

    Google Scholar 

  • Gopinathan, P., & Prakash, M. (2014). Effect of vermicompost enriched with bio-fertilizers on the productivity of tomato (Lycopersicum esculentum mill.). International Journal of Current Microbiology and Applied Sciences, 3, 1238–1245.

    Google Scholar 

  • Gu, Y., Hou, Y., Huang, D., Hao, Z., Wang, X., Wei, Z., et al. (2016). Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant And Soil, 415(1-2), 269–281. https://doi.org/10.1007/s11104-016-3159–8.

    Article  Google Scholar 

  • Harman, G., Petzoldt, R., Comis, A., & Chen, J. (2004). Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology, 94(2), 147–153.

    Article  Google Scholar 

  • Himmelstein, J., Maul, J., Balci, Y., & Everts, K. L. (2016). Factors associated with leguminous green manure incorporation and fusarium wilt suppression in watermelon. Plant Disease, 100(9), 1910–1920.

    Article  CAS  Google Scholar 

  • Hofmann, N. (2008). A geographical profile of livestock manure production in Canada. EnviroStats, 2 (4), 12–16, Catalogue no. 16-002-X. http://www.statcan.gc.ca/pub/16-002-x/16-002-x2008004-eng.pdf

  • Hsu, S. T. (1991). Ecology and control of Pseudomonas solanacearum in Taiwan. Plant Protection Bulletin (Taiwan), 33, 72–79.

    Google Scholar 

  • Huang, X., Shi, D., Sun, F., et al. (2012). Efficacy of sludge and manure compost amendments against Fusarium wilt of cucumber. Environmental Science and Pollution Research, 19(9), 3895–3905.

    Article  Google Scholar 

  • Ippolito Francesca. (2016). Biochar as a new soil amendment to promote plant growth and disease control. Dissertation, Università degli Studi di Napoli Federico II, p. 92. http://www.fedoa.unina.it/11002/1/Tesi%20dottorato%20Ippolito%20Francesca.pdf

  • Jaiswal, A. K., Elad, Y., Paudel, I., Graber, E. R., Cytryn, E., & Frenkel, O. (2017). Linking the belowground microbial composition, diversity and activity to Soilborne disease suppression and growth promotion of tomato amended with biochar. Scientific Reports, 7, 44382. https://doi.org/10.1038/srep44382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., & Steinberg, C. (2007). Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biology and Biochemistry, 39, 1–23.

    Article  CAS  Google Scholar 

  • Joshi, D., Hooda, K. S., Bhatt, J. C., Mina, B. L., & Gupta, H. S. (2009). Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Protection, 28(7), 608–615.

    Article  Google Scholar 

  • Kanaan, H., Medina, S., & Raviv, M. (2017). The effects of soil solarization and compost on soil suppressiveness against Fusarium Oxysporum f. sp. Melonis. Compost Science & Utilization, 25, 206. https://doi.org/10.1080/1065657X.2016.1277807.

    Article  CAS  Google Scholar 

  • King, S. R., Davis, A. R., Liu, W., & Levi, A. (2008). Grafting for disease resistance. HortScience, 43(2008), 1673–1676.

    Article  Google Scholar 

  • Kolton, M., Graber, E. R., Tsehansky, L., Elad, Y., & Cytryn, E. (2017). Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphera. The New Phytologist, 213, 1393–1404. https://doi.org/10.1111/nph.14253.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, J., Rillig, M., Thies, J., Masiello, C., Hockaday, W., & Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    Article  CAS  Google Scholar 

  • Lemessa, F., & Zeller, W. (2007). Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control, 42, 336–344.

    Article  Google Scholar 

  • Liu, Y., Shi, J., Feng, Y., Yang, X., Li, X., & Shen, Q. (2013). Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biology and Fertility of Soils, 49, 447. https://doi.org/10.1007/s00374-012-0740-z.

    Article  Google Scholar 

  • Liu, L., Sun, C., He, X., Liu, X., Wu, H., Liu, M., et al. (2016). The secondary compost products enhances soil suppressive capacity against bacterial wilt of tomato caused by Ralstonia solanacearum. European Journal Of Soil Biology, 75, 70–78. https://doi.org/10.1016/j.ejsobi.2016.04.005.

    Article  Google Scholar 

  • Lopez-Escudero, F. J., & Blanco-Lopez, M. A. (1999). First report of transmission of Verticillium dahlia by infested manure in olive orchards in Andalucía (Southern Spain). Plant Disease, 3, 1178.

    Article  Google Scholar 

  • Lu, Y., Rao, S., Huang, F., Cai, Y., Wang, G., & Cai, K. (2016). Effects of biochar amendment on tomato bacterial wilt resistance and soil microbial amount and activity. International Journal of Agronomy, 2016., Article ID 2938282, 10 pages. https://doi.org/10.1155/2016/2938282.

  • Małolepsza, U. (2006). Induction of disease resistance by acibenzolar-S-methyl and o-hydroxyethylorutin against Botrytis cinerea in tomato plants. Crop Protection, 25(9), 956–962.

    Article  Google Scholar 

  • Marathe, R., Sharma, J., Murkute, A., & Babu, K. (2017). Response of nutrient supplementation through organics on growth, yield and quality of pomegranate. Scientia Horticulturae, 214, 114–121. https://doi.org/10.1016/j.scienta.2016.11.024.

    Article  CAS  Google Scholar 

  • Margareth, C., & Mangkoedihardjo, S. (2010). Compost as bio carrier for remediation of lead polluted soil. International Journal of Academic Research, 2, 153–155.

    Google Scholar 

  • Mawar, R., & Lodha, S. (2015). Suppression of soilborne plant pathogens by cruciferous residues. In M. Meghvansi & A. Varma (Eds.), Organic amendments and soil suppressiveness in plant disease management. (Soil biology) (Vol. 46). Cham: Springer.

    Chapter  Google Scholar 

  • Mazzola, M., Agostini, A., & Cohen, M. F. (2017). Incorporation of Brassica seed meal soil amendment and wheat cultivation for control of Macrophomina phaseolina in strawberry. European Journal of Plant Pathology, 149, 57. https://doi.org/10.1007/s10658-017-1166-0.

    Article  CAS  Google Scholar 

  • Messiha, N. A. S., van Diepeningen, A. D., Wenneker, M., van Beuningen, A. R., Janse, J. D., Coenen, T. G. C., Termorshuizen, A. J., van Bruggen, A. H. C., & Block, W. J. (2007). Biological soil disinfestation (BOD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. European Journal of Plant Pathology, 117, 403–415.

    Article  Google Scholar 

  • Montiel-Rozas, M., López-García, Á., Kjøller, R., Madejón, E., & Rosendahl, S. (2016). Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements. Mycorrhiza, 26(6), 575–585.

    Article  CAS  Google Scholar 

  • Pandey, R. K., Gowsami, P. K., & Singh, S. (2005). Management of root knot nematode and fusarium wilt disease complex by fungal bio-agents, neem oil seed cake and/or VA-Mycorrhiza on chickpea. International Chickpea and Pigeon pea Newsletter, 12, 32–34.

    Google Scholar 

  • Paudel, B. R., Carpenter-Boggs, L., & Higgins, S. (2016). Influence of brassicaceous soil amendments on potentially beneficial and pathogenic soil microorganisms and seedling growth in Douglas-fir nurseries. Applied Soil Ecology, 105, 91–100.

    Article  Google Scholar 

  • Pieterse, C. M. J., Van Pelt, J. A., Verhagen, B. W. M., Ton, J., Van Wees, S. C. M., Leon- Kloosterziel, K. M., & Van Loon, L. C. (2003). Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis, 35, 39–54.

    CAS  Google Scholar 

  • Prashar, P., Kapoor, N., & Sachdeva, S. (2013). Rhizosphera: Its structure, bacterial diversity and significance. Reviews in Environmental Science and Bio/Technology, 13(1), 63–77.

    Article  Google Scholar 

  • Pressler, Y., Foster, E., Moore, J., & Cotrufo, M. F. (2017). Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland. GCB Bioenergy, 9(8), 1344–1355.

    Article  Google Scholar 

  • Rafi, H., Dawari, S., & Tariq, M. (2016). Combined effect of soil amendment with oil cakes and seed priming in the control of root rot fungi of leguminous and non-leguminous crops. Pakistan Journal of Botany, 48(3), 1305–1311.

    CAS  Google Scholar 

  • Rahman, A., Sultana, V., Ara, J., & Ehteshamul-Haque, S. (2016). Induction of systemic resistance in cotton by the neem cake and Pseudomonas aeruginosa under salinity stress and Macrophomina phaseolina infection. Pakistan Journal of Botany, 48(4), 1681–1689. http://www.pakbs.org/pjbot/PDFs/48(4)/45.pdf.

    CAS  Google Scholar 

  • Rao, M. S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., & Gopalakrishnan, C. (2017). Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae, 218, 56–62.

    Article  Google Scholar 

  • Raupach, G., & Kloepper, J. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88(11), 1158–1164.

    Article  CAS  Google Scholar 

  • Regni, L., Nasini, L., Ilarioni, L., Brunori, A., Massaccesi, L., Agnelli, A., & Proietti, P. (2017). Long term amendment with fresh and composted solid olive mill waste on olive grove affects carbon sequestration by prunings, fruits, and soil. Frontiers in Plant Science, 7, 2042. https://doi.org/10.3389/fpls.2016.02042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizvi, R., & Mahmood, I. (2017). Range of microbial disease complexes with Meloidogyne species and role of botanicals in management. In Probiotics and plant health (pp. 365–381). Singapore: Springer. https://doi.org/10.1007/978-981-10-3473-2_16.

    Chapter  Google Scholar 

  • Rogovska, N., Laird, D., Leandro, L., & Aller, D. (2017). Biochar effect on severity of soybean root disease caused by Fusarium virguliforme. Plant and Soil, 413(1–2), 111–126. https://doi.org/10.1007/s11104-016-3086-8.

    Article  CAS  Google Scholar 

  • Ruano-Rosa, D., & Mercado-Blanco, J. (2015). Combining biocontrol agents and organics amendments to manage soil-borne phytopathogens. Soil Biology, 46, 457–478.

    Article  CAS  Google Scholar 

  • Russo, V. M., & Webber, C. L. (2007). Organic agricultural production in the United States: An old wheel being reinvented. Americas Journal of Plant Science and Biotechnology, 1(1), 29–35.

    Google Scholar 

  • Russo, G., Vivaldi, G., De Gennaro, B., & Camposeo, S. (2015). Environmental sustainability of different soil management techniques in a high-density olive orchard. Journal of Cleaner Production, 107, 498–508. https://doi.org/10.1016/j.jclepro.2014.06.064.

    Article  CAS  Google Scholar 

  • Schönfeld, J., Gelsomino, A., van Overbeek, L. S., Gorissen, A., Smalla, K., & Van Elsas, J. D. (2003). Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiology Ecology, 43, 63–74.

    Article  Google Scholar 

  • Shafique, H. A., Sultana, V., Ara, J., Ehteshamul-Haque, S., & Athar, M. (2015). Role of antagonistic microorganisms and organic amendment in stimulating the defense system of okra against root rotting fungi. Polish Journal of Microbiology, 64(2), 157–162.

    PubMed  Google Scholar 

  • Shafique, H., Sultana, V., Ehteshamul-Haque, S., & Athar, M. (2016). Management of soil-borne diseases of organic vegetables. Journal of Plant Protection Research, 56(3), 221.

    Article  CAS  Google Scholar 

  • Sharma, S., Aggarwal, R., & Lodha, S. (1995). Population changes of Macrophomina phaseolina and Fusarium oxysporum f. sp. cumini in oil-cake and crop residue-amended sandy soils. Applied Soil Ecology, 2(4), 281–284.

    Article  Google Scholar 

  • Sledz, W., Zoledowska, S., Motyka, A., Kadzinski, L., & Banecki, B. (2017). Growth of bacterial phytopathogens in animal manures. Acta Biochimica Polonica, 64(1), 151.

    Article  CAS  Google Scholar 

  • Soobhany, N., Mohee, R., & Garg, V. K. (2017). Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review. Waste Management, 64(64), 51–62. https://doi.org/10.1016/j.wasman.2017.03.003.

    Article  PubMed  Google Scholar 

  • Sotoyama, K., Akutsu, K., & Nakajima, M. J. (2017). Suppression of bacterial wilt of tomato by soil amendment with mushroom compost containing Bacillus amyloliquefaciens IUMC7. General Plant Pathology, 83, 51. https://doi.org/10.1007/s10327-016-0690-7.

    Article  Google Scholar 

  • Sreevidya, M., & Gopalakrishnan, S. (2017). Direct and indirect plant growth-promoting abilities of Bacillus species on chickpea, isolated from compost and rhizosphera soils. Organic Agriculture, 7(1), 31–40.

    Article  Google Scholar 

  • Stella, M., & Sashikala, M. (2016). Beneficial microorganisms isolated from vegetable compost. Journal of Tropical Agriculture and Food Science, 44(2), 277–293.

    Google Scholar 

  • Sun, R., Dsouza, M., Gilbert, J. A., Guo, X., Wang, D., Guo, Z., Ni, Y., & Chu, H. (2016). Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environmental Microbiology, 18, 5137–5150. https://doi.org/10.1111/1462-2920.13512.

    Article  CAS  PubMed  Google Scholar 

  • Tian, S., Fan, Q., Xu, Y., & Liu, H. (2002). Biocontrol efficacy of antagonist yeasts to gray mold and blue mold on apples and pears in controlled atmospheres. Plant Disease, 86(8), 848–853.

    Article  Google Scholar 

  • Ventorino, V., Parillo, R., Testa, A., et al. (2016). Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control. Journal of Environmental Management, 166, 168–177.

    Article  Google Scholar 

  • Winding, A., Imparato, V., Santos, S., Hansen, V., Haugaard-Nielsen, H., Browne, P., Hestbjerg Hansen, L., Henning Krogh, P., & Johansen, A. (2017). Soil biota response to amendment with biochar as P and K fertilizer. EGU General Assembly Conference Abstracts, 19, 17569.

    Google Scholar 

  • Yazdanpanah, N., Mahmoodabadi, M., & Cerdà, A. (2016). The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma, 266, 58–65.

    Article  CAS  Google Scholar 

  • Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of Phytoalexins. Applied and Environmental Microbiology, 69(12), 7343–7353.

    Article  CAS  Google Scholar 

  • Youssef, S., Tartoura, K., & Abdelraouf, G. (2016). Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biological Control, 100, 79–86.

    Article  CAS  Google Scholar 

  • Zhang, C., Lin, Y., Tian, X., Xu, Q., Chen, Z., & Lin, W. (2017). Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphera bacteria abundance. Applied Soil Ecology, 112, 90–96.

    Article  Google Scholar 

  • Zhao, H., Li, T., Zhang, Y., Hu, J., Bai, Y., Shan, Y., & Ke, F. (2017). Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. Journal of Soils and Sediments, 17, 2718. https://doi.org/10.1007/s11368-017-1744-y.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azim, K. (2019). Organic Amendments to Alleviate Plant Biotic Stress. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5_8

Download citation

Publish with us

Policies and ethics