Skip to main content

Advertisement

Log in

Quorum Sensing of Bacteria and Trans-Kingdom Interactions of N-Acyl Homoserine Lactones with Eukaryotes

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many environmental and interactive important traits of bacteria, such as antibiotic, siderophore or exoenzyme (like cellulose, pectinase) production, virulence factors of pathogens, as well as symbiotic interactions, are regulated in a population density-dependent manner by using small signaling molecules. This phenomenon, called quorum sensing (QS), is widespread among bacteria. Many different bacterial species are communicating or “speaking” through diffusible small molecules. The production often is sophisticatedly regulated via an autoinducing mechanism. A good example is the production of N-acyl homoserine lactones (AHL), which occur in many variations of molecular structure in a wide variety of Gram-negative bacteria. In Gram-positive bacteria, other compounds, such as peptides, regulate cellular activity and behavior by sensing the cell density. The degradation of the signaling molecule—called quorum quenching—is probably another important integral part in the complex quorum sensing circuit. Most interestingly, bacterial quorum sensing molecules also are recognized by eukaryotes that are colonized by QS-active bacteria. In this case, the cross-kingdom interaction can lead to specific adjustment and physiological adaptations in the colonized eukaryote. The responses are manifold, such as modifications of the defense system, modulation of the immune response, or changes in the hormonal status and growth responses. Thus, the interaction with the quorum sensing signaling molecules of bacteria can profoundly change the physiology of higher organisms too. Higher organisms are obligatorily associated with microbial communities, and these truly multi-organismic consortia, which are also called holobionts, can actually be steered via multiple interlinked signaling substances that originate not only from the host but also from the associated bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen, J. B., Heydorn, A., Hentzer, M., Eberl, L., Geisenberger, O., Christensen, B. B., Molin, S., and Givskov, M. 2001. gfp-based N-acyl homoserine lactone sensor systems for detection of bacterial communication. Appl. Environ. Microbiol. 67:575–585.

    Article  PubMed  CAS  Google Scholar 

  • Bai, X., Todd, C. D., Desikan, R., Yang, Y., and Hu, X. 2012. N-3-oxo-decanoyl-L-homoserine lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in Mung Bean. Plant Physiol. 158:725–736.

    Article  PubMed  CAS  Google Scholar 

  • Barriuso, J., Solano, B. R., Fray, R. G., Cámara, M., Hartmann, A., and Gutierrez Manero, F. J. 2008. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotech. J. 6:442–452.

    Article  CAS  Google Scholar 

  • Bauer, W. D. and Mathesius, U. 2004. Plant responses to bacterial quorum sensing signals. Curr. Opin. Plant Biol. 7:429–433.

    Article  PubMed  CAS  Google Scholar 

  • Boller, T. and Felix, G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406.

    Article  PubMed  CAS  Google Scholar 

  • Boontham, P., Robins, A., Chandran, P., Pritchard, D., Cámara, M., Williams, P., Chuthapisith, S., Mckechnie, A., Rowlands, B. J., and Eremin, O. 2008. Significant immune-modulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: Possible link in human sepsis. Clin. Sci. (Lond.) 115:343–351.

    Article  CAS  Google Scholar 

  • Cao, Y., He, S., Zhou, Z., Zhang, M., Mao, W., Zhang, H., and Yao, B. 2012. Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in Zebrafish. Appl. Environ. Microbiol. 78:1899–1908.

    Article  PubMed  CAS  Google Scholar 

  • Charlton, T. S., De Nys, R., Netting, A., Kumar, N., Hentzer, M., Givskov, M., and Kjelleberg, S. 2000. A novel and sensitive method for the quantification of N-acyl 3-oxo-homoserine lactones using gas chromatography-mass spectrometry: Application to a model bacterial biofilm. Environ. Microbiol. 2:530–541.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Buddrus-Schiemann, K., Rothballer, M., Krämer, P., and Hartmann, A. 2010a. Detection of quorum sensing molecules in Burkholderia cepacia culture supernatants with enzyme-linked immunosorbent assays. Anal. Bioanal. Chem. 398:2669–2676.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Kremmer, E., Gouzy, M. F., Clausen, E., Starke, M., Wöllner, K., Pfister, G., Hartmann, A., and Krämer, P. 2010b. Development and characterization of rat monoclonal antibodies for N-acylated homoserine lactones. Anal. Bioanal. Chem. 398:2655–2667.

    Article  PubMed  CAS  Google Scholar 

  • Chu, W., Lu, F., Zhu, W., and Kang, C. 2010. Isolation and characterization of new potential probiotic bacteria based on quorum-sensing system. J. Appl. Microbiol. 110:202–208.

    Article  PubMed  Google Scholar 

  • Cooley, M., Chhabra, S. R., and Williams, P. 2008. N-acyl homoserine lactone-mediated quorum sensing: A twist in the tail and a blow for host immunity. Chem. Biol. 15:1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Cugini, C., Kolter, R., and Hogan, D. A. 2008. Interdomain crosstalks, pp. 419–430, in S. C. Winans and B. L. Bassler (eds.), Chemical Communication Among Bacteria. ASM Press, Washington, DC, USA.

    Google Scholar 

  • Del Vecchio, P., Elias, M., Merone, L., Graziano, G., Dupuy, J., Mandrich, L., Carullo, P., Fournier, B., Rochu, D., Rossi, M., Masson, P., Chabriere, E., and Manco, G. 2009. Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archeon Sulfolobus solfataricus. Extremophiles 13:461–470.

    Article  PubMed  CAS  Google Scholar 

  • Delalande, L., Faure, D., Raffoux, A., Uroz, S., D’Angelo-Picard, C., Elasri, M., Carlier, A., Berruver, R., Petit, A., Williams, P., and Dessaux, Y. 2005. N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol. Ecol. 52:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Diggle, S. P., Gardner, A., West, S. A., and Griffin, A. S. 2007. Evolutionary theory of bacterial quorum sensing: When is a signal not a signal? Phil. Trans. R. Soc. B 362:1241–1249.

    Article  PubMed  CAS  Google Scholar 

  • Eberhard, A. 1972. Inhibition and activation of bacterial luciferase synthesis. J. Bacteriol. 109:1101–1108.

    PubMed  CAS  Google Scholar 

  • Eberl, L. 1999. N-acylhomoserine lactone-mediated gene regulation in Gram-negative bacteria. Syst. Appl. Microbiol. 22:493–506.

    Article  PubMed  CAS  Google Scholar 

  • Effmert, U., Kalderas, J., Warnke, R., and Piechulla, B. 2012. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. this issue.

  • Elasri, M., Delorme, S., Lemanceau, P., Stewart, G., Laue, B., Glickmann, E., Oger, P. M., and Dessaux, Y. 2001. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl. Environ. Microbiol. 67:1198–1209.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, A., Rothballer, M., Frommberger, M., Li, X., Englmann, M., Fekete, J., Hartmann, A., Eberl, L., and Schmitt-Kopplin, P. 2007. Identification of bacterial N-acylhomoserine lactones (AHL) using ultra performance liquid chromatography (UPLC™), ultrahigh resolution mass spectrometry and in situ biosensor constructs. Anal. Bioanalyt. Chem. 387:455–467.

    Article  CAS  Google Scholar 

  • Fekete, A., Kuttler, C., Rothballer, M., Fischer, D., Buddrus, K., Hense, B. A., Lucio, M., Müller, J., Schmitt-Kopplin, P., and Hartmann, A. 2010a. Dynamic regulation of AHL-production and degradation in Pseudomonas putida IsoF. FEMS Microbiol. Ecol. 72:22–34.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, A., Rothballer, M., Hartmann, A., and Schmitt-Kopplin, P. 2010b. Identification of bacterial autoinducers, pp. 95–111, in R. Kraemer and K. Jung (eds.), Bacterial Signaling. Wiley Publishers, Weinheim, Germany.

    Google Scholar 

  • Flavier, A. B., Clough, S. J., Schell, M. A., and Denny, T. P. 1997. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol. Microbiol. 26:251–259.

    Article  PubMed  CAS  Google Scholar 

  • Folcher, M., Gaillard, H., Nguyen, L. T., Nguyen, K. T., Lacroix, P., Bamas-Jacques, N., Rinkel, M., and Thompson, C. J. 2001. Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem. 276:44297–44306.

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., and Sarniguet, A. 2011. Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75:583–609.

    Article  PubMed  CAS  Google Scholar 

  • Frommberger, M., Schmitt-Kopplin, P., Menzinger, F., Albrecht, V., Schmid, M., Eberl, L., Hartmann, A., and Kettrup, A. 2003. Analysis of N-acyl-L-homoserine lactones produced by Burkholderia cepacia with partial filling micellar electrokinetic chromatography – electrospray ionization-ion trap mass spectrometry. Electrophoresis 24:3067–3074.

    Article  PubMed  CAS  Google Scholar 

  • Frommberger, M., Schmitt-Kopplin, P., Ping, G., Frisch, H., Schmid, M., Zhang, Y., Hartmann, A., and Kettrup, A. 2004. A simple and robust set-up for on-column sample preconcentration – nano-liquid chromatography – electrospray ionization mass spectrometry for the analysis of N-homoserine lactones. Anal. Bioanal. Chem. 378:1014–1020.

    Article  PubMed  CAS  Google Scholar 

  • Fuqua, C., Winans, S. C., and Greenberg, E. P. 1996. Census and consensus in bacterial ecosystems: The luxR-luxI family of quorum sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727–751.

    Article  PubMed  CAS  Google Scholar 

  • Gantner, S., Schmid, M., Dürr, C., Schuhegger, R., Steidle, A., Hutzler, P., Langebartels, C., Eberl, L., Hartmann, A., and Dazzo, F. B. 2006. In situ spatial scale of calling distances and population density-independent N-acylhomoserine lactone mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol. Ecol. 56:188–194.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, J. E. and Keshavan, N. D. 2006. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70:859–875.

    Article  PubMed  CAS  Google Scholar 

  • Götz, C., Fekete, A., Gebefuegi, I., Forczek, S., Fuksová, K., Li, X., Englmann, M., Gryndler, M., Hartmann, A., Matucha, M., Schmitt-Kopplin, P., and Schröder, P. 2007. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal. Bioanal. Chem. 389:1447–1457.

    Article  PubMed  Google Scholar 

  • Heidel, A. J., Barazani, O., and Baldwin, I. T. 2010. Interaction between herbivore defense and microbial signaling: Bacterial quorum-sensing compounds weaken JA-mediated herbivore resistance in Nicotiana attenuata. Chemoecology 20:149–154.

    Article  CAS  Google Scholar 

  • Hense, B. A., Kuttler, C., Müller, J., Rothballer, M., Hartmann, A., and Kreft, J.-U. 2007. Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 5:230–239.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, D. A., Vik, A., and Kolter, R. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54:1212–1223.

    Article  PubMed  CAS  Google Scholar 

  • Holden, M. T., Chhabra, S. R., de Nys, R., Stead, P., Bainton, N. J., Hill, P. J., Manefield, M., Kumar, N., Labatte, M., England, D., Rice, S., Givskov, M., Salmond, G. P., Stewart, G. S., Bycroft, B. W., Kjelleberg, S., and Williams, P. 1999. Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol. Microbiol. 33:1254–1266.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J. J., Petersen, A., Whiteley, M., and Leadbetter, J. R. 2006. Identification of QuiP, the product of gene PA1032, as the second acyl homoserine lactone acylase. Appl. Environ. Microbiol. 72:1190–1197.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, H. B. and Greenberg, E. P. 1985. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163:1210–1214.

    PubMed  CAS  Google Scholar 

  • Kaufmann, G. F., Sartorio, R., Lee, S. H., Mee, J. M., Altobell, L. J., Kujawa, D. P., Jeffries, E., Clapham, B., Meijler, M. M., and Janda, K. D. 2006. Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J. Am. Chem. Soc. 128:2802–2803.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, G. F., Park, J., Mee, J. M., Ulevitch, R. J., and Janda, K. D. 2008. The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of Pseudomonas aeruginosa quorum sensing signaling molecule N-3-oxo-dodecanoyl-homoserine lactone. Mol. Immunol. 45:2710–2714.

    Article  PubMed  CAS  Google Scholar 

  • Kravchenko, V. V., Kaufmann, G. F., Mathison, J. C., Scott, D. A., Katz, A. Z., Wood, M. R., Brogan, A. P., Lehmann, M., Mee, J. M., Iwata, K., Pan, Q., Fearns, C., Knaus, U. G., Meijler, M. M., Janda, K. D., and Ulevitch, R. J. 2006. N-(3-oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways. J. Biol. Chem. 281:28822–28830.

    Article  PubMed  CAS  Google Scholar 

  • Krysciak, D., Schmeisser, C., Preuss, S., Riethausen, J., Quitschau, M., Grond, S., and Streit, W. R. 2011. Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen–fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234. Appl. Environ. Microbiol. 77:5089–5099.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Fekete, A., Englmann, M., Götz, C., Rothballer, M., Buddrus, K., Schröder, P., Hartmann, A., Chen, G., and Schmitt-Kopplin, P. 2006. Development of a solid phase extraction - ultra pressure liquid chromatography method for the determination of N-acyl homoserine lactones from bacterial supernatants. J. Chromat. A 1134:186–193.

    Article  CAS  Google Scholar 

  • Liu, F., Bian, Z., Jia, Z., Zhao, Q., and Song, S. 2012. GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol. Plant Microbe Interact. 25:677–683.

    Google Scholar 

  • Lyon, G. J. and Novick, C. 2004. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403.

    Article  PubMed  CAS  Google Scholar 

  • Malik, A. K., Fekete, A., Gebefuegi, I., Rothballer, M., and Schmitt-Kopplin, P. 2009. Single drop microextraction of homoserine lactones based quorum sensing signal molecules, and the separation of their enantiomers using gas chromatography mass spectrometry in the presence of biological matrices. Microchim. Acta 166:101–107.

    Article  CAS  Google Scholar 

  • Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B. G., and Bauer, W. D. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. U. S. A. 100:1444–1449.

    Article  PubMed  CAS  Google Scholar 

  • McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, C. S. A. B., and Williams, P. 1997. Quorum sensing and Chromobacterium violaceum: Exploitation of the violacein production and inhibition for the detection of N-acyl homoserine lactonase. Microbiol. 143:3703–3711.

    Article  CAS  Google Scholar 

  • Mcknight, S. L., Iglewski, B. H., and Pesci, E. C. 2000. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182:2702–2708.

    Article  PubMed  CAS  Google Scholar 

  • Minagawa, S., Inami, H., Kato, T., Sawada, S., Yasuki, T., Miyairi, S., Horikawa, M., Okuda, J., and Gotoh, N. 2012. RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl homoserine lactones, for cell-to-cell communication. BMC Microbiol. doi:10.1186/1471-2180-12-70

  • Mogge, B., Loferer, C., Agerer, R., Hutzler, P., and Hartmann, A. 2000. Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CSLM). Mycorrhiza 9:272–278.

    Article  Google Scholar 

  • Morin, D., Grasland, B., Vallee-Rehel, K., Dufau, C., and Haras, D. 2003. On-line high performance liquid chromatography – mass spectrometry detection and quantification of N-acylhomoserine lactone quorum sensing signal molecules, in the presence of biological matrices. J. Chromatogr. A 1002:79–92.

    Article  PubMed  CAS  Google Scholar 

  • Müller, J., Kuttler, C., Hense, B. A., Rothballer, M., and Hartmann, A. 2006. Cell-cell communication by quorum sensing and dimension-reduction. J. Math. Biol. 53:672–702.

    Article  PubMed  Google Scholar 

  • Ortiz-Castro, R., Martinez-Trujillo, M., and Lopez-Bucio, J. 2008. N-acyl-L-homoserine lactones: A class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ. 31:1497–1509.

    Article  PubMed  CAS  Google Scholar 

  • Pang, Y., Liu, X., Ma, Y., Chernin, L., Berg, G., and Gao, K. 2009. Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur. J. Plant Pathol. 124:261–268.

    Article  CAS  Google Scholar 

  • Park, J., Jagasia, R., Kaufmann, G. F., Mathison, J. C., Ruiz, D. I., Moss, J. A., Meijer, M. M., Ulevitch, R. J., and Janda, K. D. 2007. Infection control by antibody disruption of bacterial quorum sensing signaling. Chem. Biol. 14:1119–1127.

    Article  PubMed  CAS  Google Scholar 

  • Riaz, K., Elmerich, C., Moreira, D., Raffoux, A., Dessaux, Y., and Faure, D. 2008. A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Env. Microbiol. 10:560–570.

    Article  CAS  Google Scholar 

  • Ritchie, A. J., Whittall, C., Lazenby, J. J., Chhabra, S. R., Pritchard, D. I., and Cooley, M. A. 2007. The immunomodulatory Pseudomonas aeruginosa signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone enters mammaliam cells in an unregulated fashion. Immunol. Cell Biol. 85:596–602.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, S. T., Stein, E., Kogel, K. H., and Schikora, A. 2012. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav. 7:178–181.

    Article  PubMed  Google Scholar 

  • Schertzer, J. W., Boulette, M. L., and Whiteley, M. 2009. More than a signal: Non-signaling properties of quorum sensing molecules. Trends Microbiol. 17:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Schikora, A., Schenk, S. T., Stein, E., Molitor, A., Zuccaro, A., and Kogel, K.-H. 2011. N-acyl homoserine lactone confers resistance towards biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 157:1407–1418.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, C., Hornung, C., Bijtenhoorn, P., Quitschau, M., Grond, S., and Streit, W. R. 2009. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl. Env. Microbiol. 75:224–233.

    Article  CAS  Google Scholar 

  • Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., van Breusegem, F., Eberl, L., Hartmann, A., and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl homoserine lactone–producing rhizosphere bacteria. Plant Cell Environ. 29:909–918.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, M., Schmid, M., Rothballer, M., Hause, G., Zuccaro, A., Imani, J., Schäfer, P., Hartmann, A., and Kogel, K.-H. 2008. Detection and identification of mycorrhiza helper bacteria intimately associated with representatives of the order Sebacinales. Cell. Microbiol. 10:2235–2246.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. S., Fedyk, E. R., Springer, T. A., Mukaida, N., Iglewski, B. H., and Phipps, R. P. 2001. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas aeruginosa autoinducer N-3-oxodecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J. Immunol. 167:366–374.

    PubMed  CAS  Google Scholar 

  • Soi, C. F., Otten, L. G., Cool, R. H., Diggle, S. P., Braun, P. G., Bos, R., Daykin, M., Camara, M., Williams, P., and Quax, W. J. 2006. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immunol. 74:1673–1682.

    Article  Google Scholar 

  • Stacy, A. R., Diggle, S. P., and Whiteley, M. 2012. Rules of engagement: Defining bacterial communication. Curr. Opin. Microbiol. 15:155–161.

    Article  PubMed  Google Scholar 

  • Steidle, A., Sigl, K., Schuhegger, R., Ihring, A., Schmid, M., Gantner, S., Stoffels, M., Riedel, K., Givskov, M., Hartmann, A., Langebartels, C., and Eberl, L. 2001. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67:5761–5770.

    Article  PubMed  CAS  Google Scholar 

  • Teplitski, M., Mathesius, U., and Rumbaugh, K. P. 2011. Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem. Rev. 111:100–116.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, N. R., Crow, M. A., McGowan, S. J., Cox, A., and Salmond, G. P. 2000. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol. Microbiol. 36:539–556.

    Article  PubMed  CAS  Google Scholar 

  • Uroz, S. and Heinonsalo, J. 2008. Degradation of N-acyl homoserin lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol. Ecol. 65:271–278.

    Article  PubMed  CAS  Google Scholar 

  • Uroz, S., Dessaux, Y., and Oruz, P. 2009. Quorum sensing and quorum quenching: The Yin and Yang of bacterial communication. ChemBioChem 10:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Von Rad, U., Klein, I., Dobrev, P. I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A., Schmitt-Kopplin, P., and Durner, J. 2008. The response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85.

    Article  PubMed  Google Scholar 

  • Wang, L. H., He, Y., Gao, Y., Wu, J. E., Dong, Y. H., He, C., Wang, S. X., Weng, L. X., Xu, J. L., Tay, L., Fang, R. X., and Zhang, L. H. 2004. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol. Microbiol. 51:903–912.

    Article  PubMed  CAS  Google Scholar 

  • Waters, C. M. and Bassler, B. I. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319–346.

    Article  PubMed  CAS  Google Scholar 

  • Winzer, K., Hardie, K. R., and Williams, P. 2002. Bacterial cell-to-cell communication: Sorry, can’t talk now – gone for lunch! Curr. Opin. Microbiol. 5:216–222.

    Article  PubMed  CAS  Google Scholar 

  • Yeon, K. M., Cheong, W. S., Oh, H. S., Lee, W. N., Huang, B. K., Lee, C. H., Beyenal, H., and Lewandowski, Z. 2009. Quorum sensing: A new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 43:380–385.

    Article  PubMed  CAS  Google Scholar 

  • Zilber-Rosenberg, I. and Rosenberg, E. 2008. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32:723–735.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, S., Wagner, C., Müller, W., Brenner-Weiss, G., Hug, F., Prior, B., Obst, U., and Hänsch, G. M. 2006. Induction of neutrophile chemotaxis by the quorum-sensing molecule N-(3-oxododecanoyl)-homoserine lactone. Infect. Immun. 74:5687–5692.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, A., Schikora, A. Quorum Sensing of Bacteria and Trans-Kingdom Interactions of N-Acyl Homoserine Lactones with Eukaryotes. J Chem Ecol 38, 704–713 (2012). https://doi.org/10.1007/s10886-012-0141-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0141-7

Keywords

Navigation