Skip to main content
Log in

Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Organophosphates (OPs) constitute the largest class of insecticides used worldwide and certain of them are potent nerve agents. Consequently, enzymes degrading OPs are of paramount interest, as they could be used as bioscavengers and biodecontaminants. Looking for a stable OPs catalyst, able to support industrial process constraints, a hyperthermophilic phosphotriesterase (PTE) (SsoPox) was isolated from the archaeon Sulfolobus solfataricus and was found to be highly thermostable. The solved 3D structure revealed that SsoPox is a noncovalent dimer, with lactonase activity against “quorum sensing signals”, and therefore could represent also a potential weapon against certain pathogens. The structural basis of the high thermostability of SsoPox has been investigated by performing a careful comparison between its structure and that of two mesophilic PTEs from Pseudomonas diminuta and Agrobacterium radiobacter. In addition, the conformational stability of SsoPox against the denaturing action of temperature and GuHCl has been determined by means of circular dichroism and fluorescence measurements. The data suggest that the two fundamental differences between SsoPox and the mesophilic counterparts are: (a) a larger number of surface salt bridges, also involved in complex networks; (b) a tighter quaternary structure due to an optimization of the interactions at the interface between the two monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OPs:

Organophosphates

PTE:

Phosphotriesterase

OPD:

Organophosphate-degrading

PLL:

Phosphotriesterase-like lactonase

References

  • Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45:13677–13686

    Article  PubMed  CAS  Google Scholar 

  • Aubert SD, Li Y, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43:5707–5715

    Article  PubMed  CAS  Google Scholar 

  • Bruins ME, Janssen AE, Boom RM (2001) Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol 90:155–186

    Article  PubMed  CAS  Google Scholar 

  • Chan MK, Mukund S, Kletzin A, Adams MW, Rees DC (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267:1463–1469

    Article  PubMed  CAS  Google Scholar 

  • Cheng TC, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140

    PubMed  CAS  Google Scholar 

  • D’Amico S, Marx JC, Gerday C, Feller G (2003) Activity–stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  PubMed  CAS  Google Scholar 

  • Danciulescu C, Ladenstein R, Nilsson L (2007) Dynamic arrangement of ion pairs and individual contributions to the thermal stability of the cofactor-binding domain of glutamate dehydrogenase from Thermotoga maritima. Biochemistry 46:8537–8549

    Article  PubMed  CAS  Google Scholar 

  • De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, Rossi M, Pedone C (2001) The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J Mol Biol 314:507–518

    Article  PubMed  CAS  Google Scholar 

  • Del Vecchio P, Graziano G, Granata V, Barone G, Mandrich L, Manco G, Rossi M (2002a) Temperature- and denaturant-induced unfolding of two thermophilic esterases. Biochemistry 41:1364–1371

    Article  PubMed  CAS  Google Scholar 

  • Del Vecchio P, Graziano G, Granata V, Barone G, Mandrich L, Rossi M, Manco G (2002b) Denaturing action of urea and guanidine hydrochloride towards two thermophilic esterases. Biochem J 367:857–863

    Article  PubMed  CAS  Google Scholar 

  • Del Vecchio P, Graziano G, Granata V, Farias T, Barone G, Mandrich L, Rossi M, Manco G (2004) Denaturant-induced unfolding of the acetyl-esterase from Escherichia coli. Biochemistry 43:14637–14643

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system DeLano scientific. San Carlos, CA

    Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  PubMed  CAS  Google Scholar 

  • Dong Y-H, Wang L-H, Xu J-L, Zhang H-B, Zhang X-F, Zhang L-H (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    Article  PubMed  CAS  Google Scholar 

  • Elias M, Dupuy J, Merone L, Lecomte C, Rossi M, Masson P, Manco G, Chabriere E (2007) Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase. Acta Crystallograph Sect F Struct Biol Cryst Commun 63:553–555

    Article  CAS  Google Scholar 

  • Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, Lecomte C, Rossi M, Masson P, Manco G, Chabriere E (2008) Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 379:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Farber GK, Petsko GA (1990) The evolution of alpha/beta barrel enzymes. Trends Biochem Sci 15:228–234

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi S, Nishikawa K (2001) Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol 309:835–843

    Article  PubMed  CAS  Google Scholar 

  • Ghanem E, Raushel FM (2005) Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol Appl Pharmacol 207:459–470

    Article  PubMed  CAS  Google Scholar 

  • Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  • Goldman A (1995) How to make my blood boil. Structure 3:1277–1279

    Article  PubMed  CAS  Google Scholar 

  • Grimsley JK, Scholtz JM, Pace CN, Wild JR (1997) Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric intermediate. Biochemistry 36:14366–14374

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Guillot B, Lecomte C, Cousson A, Scherf C, Jelsch C (2001) High-resolution neutron structure of nicotinamide adenine dinucleotide. Acta Crystallogr D Biol Crystallogr 57:981–989

    Article  PubMed  CAS  Google Scholar 

  • Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RB, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Sterner R, Kirschner K, Jansonius JN (1997) Crystal structure at 2.0 Å resolution of phosphoribosyl anthranilate isomerase from the hyperthermophile Thermotoga maritima: possible determinants of protein stability. Biochemistry 36:6009–6016

    Article  PubMed  CAS  Google Scholar 

  • Horne I, Qiu X, Russell RJ, Oakeshott JG (2003) The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol Lett 222:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Maser RL, Magenheimer BS, Calvet JP (1996) A mouse kidney- and liver-expressed cDNA having homology with a prokaryotic parathion hydrolase (phosphotriesterase)-encoding gene: abnormal expression in injured and polycystic kidneys. Gene 168:157–163

    Article  PubMed  CAS  Google Scholar 

  • Jackson C, Kim HK, Carr PD, Liu JW, Ollis DL (2005) The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Biochim Biophys Acta 1752:56–64

    PubMed  CAS  Google Scholar 

  • Jackson CJ, Foo JL, Kim HK, Carr PD, Liu JW, Salem G, Ollis DL (2008) In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. J Mol Biol 375:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R, Bohm G (1998) The stability of proteins in extreme environments. Curr Opin Struct Biol 8:738–748

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Thornton JM (1996) Principles of protein–protein interactions. Proc Natl Acad Sci USA 93:13–20

    Article  PubMed  CAS  Google Scholar 

  • Karshikoff A, Ladenstein R (2001) Ion pairs and the thermotolerance of proteins from hyperthermophiles: a “traffic rule” for hot roads. Trends Biochem Sci 26:550–556

    Article  PubMed  CAS  Google Scholar 

  • Koepke J, Scharff EI, Lucke C, Ruterjans H, Fritzsch G (2002) Atomic resolution crystal structure of squid ganglion DFPase. Acta Crystallogr D Biol Crystallogr 58:1757–1759

    Article  PubMed  CAS  Google Scholar 

  • Ladenstein R, Antranikian G (1998) Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv Biochem Eng Biotechnol 61:37–85

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

  • LeJeune KE, Wild JR, Russell AJ (1998) Nerve agents degraded by enzymatic foams. Nature 395:27–28

    Article  PubMed  CAS  Google Scholar 

  • Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285:2177–2198

    Article  PubMed  CAS  Google Scholar 

  • McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  PubMed  CAS  Google Scholar 

  • Merone L, Mandrich L, Rossi M, Manco G (2005) A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9:297–305

    Article  PubMed  CAS  Google Scholar 

  • Merone L, Mandrich L, Rossi M, Manco G (2008) Enzymes with phosphotriesterase and lactonase activities in Archaea. Current Chem Biol 2:237–248

    Article  CAS  Google Scholar 

  • Munnecke DM (1976) Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol 32:7–13

    PubMed  CAS  Google Scholar 

  • Murshudov N, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  PubMed  CAS  Google Scholar 

  • Pichon-Pesme V, Jelsch C, Guillot B, Lecomte C (2004) A comparison between experimental and theoretical aspherical-atom scattering factors for charge–density refinement of large molecules. Acta Crystallogr A 60:204–208

    Article  PubMed  CAS  Google Scholar 

  • Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 5:288–295

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Seibert CM, Raushel FM (2005) Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44:6383–6391

    Article  PubMed  CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875

    Article  PubMed  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164

    Article  PubMed  CAS  Google Scholar 

  • Sterner R, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106

    Article  PubMed  CAS  Google Scholar 

  • Suhre K, Claverie JM (2003) Genomic correlates of hyperthermostability, an update. J Biol Chem 278:17198–17202

    Article  PubMed  CAS  Google Scholar 

  • Szilagyi A, Zavodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8:493–504

    Article  PubMed  CAS  Google Scholar 

  • Vetriani C, Maeder DL, Tolliday N, Yip KS, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT (1998) Protein thermostability above 100 degrees C: a key role for ionic interactions. Proc Natl Acad Sci USA 95:12300–12305

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Walden H, Taylor GL, Lorentzen E, Pohl E, Lilie H, Schramm A, Knura T, Stubbe K, Tjaden B, Hensel R (2004) Structure and function of a regulated archaeal triosephosphate isomerase adapted to high temperature. J Mol Biol 342:861–875

    Article  PubMed  CAS  Google Scholar 

  • Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319

    Article  PubMed  CAS  Google Scholar 

  • Wong KY, Gao J (2007) The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations. Biochemistry 46:13352–13369

    Article  PubMed  CAS  Google Scholar 

  • Wright HT (1991) Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Protein Eng 4:283–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants to E.C. by Délégation Générale pour l’Armement (CO no. 010807/03-10) and by the C.N.R.S. D.R. is under contract with Bundesministerium der Verteidigung (M/SAB/1/7/A004). We also thank MIUR project “Piano Nazionale Ricerca per le Biotecnologie Avanzate Tema II, Biocatalisi”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Manco.

Additional information

Communicated by T. Matsunaga.

Pompea Del Vecchio, Mikael Elias and Luigia Merone were contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Vecchio, P., Elias, M., Merone, L. et al. Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus . Extremophiles 13, 461–470 (2009). https://doi.org/10.1007/s00792-009-0231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0231-9

Keywords

Navigation