Skip to main content
Log in

Survey of a Salivary Effector in Caterpillars: Glucose Oxidase Variation and Correlation with Host Range

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Salivary glucose oxidase (GOX) has been reported in a few insect species where it plays a role in protection against infectious disease. Our recent research has focused on the role of this salivary enzyme in the noctuid Helicoverpa zea, where it functions as an effector to suppress the induced defenses of the host plant Nicotiana tabacum. In this study, we examined the labial gland GOX activities in 23 families of Lepidoptera (85 species) and two families of plant-feeding Hymenoptera (three species). We analyzed the relationship between host breadth and GOX activities, and we found a significant relationship, where highly polyphagous species were more likely to possess relatively high levels of GOX compared to species with more limited host range. We also examined the effect of diet on GOX activity and found that the host plant had a significant effect on enzyme activity. The significance of these findings is discussed in relation to caterpillar host breadth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal, A. A. 2000. Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89:493–500.

    Article  Google Scholar 

  • Ahmad, S. A., and Hopkins, T. L. 1993. β-Glucosylation of plant phenolics by phenol β-glucosyltransferase in larval tissues of the tobacco hornworm, Manduca sexta (L). Insect Biochem. Mol. Biol. 23:581–589.

    Article  CAS  Google Scholar 

  • Ankala, A., Luthe, D. S., Williams, W. P., and Wilkinson, J. R. 2009. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. Mol. Plant-Microb. Interact. 22:1555–1564.

    Article  CAS  Google Scholar 

  • Babic, B., Poisson, A., Darwish, S., Lacasse, J., Merkx-Jacques, M., Despland, E., and Bede, J. C. 2008. Influence of dietary nutritional composition on caterpillar salivary enzyme activity. J. Insect Physiol. 54:286–296.

    Article  PubMed  CAS  Google Scholar 

  • Bede, J., Musser, R., Felton, G., and Korth, K. 2006. Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol. Biol. 60:519–531.

    Article  PubMed  CAS  Google Scholar 

  • Begliomini, A. L., Montedoro, G., Servili, M., Petruccioli, M., and Federici, F. 1995. Oxidoreductases from tomato fruit: Inhibitory effect of a fungal glucose oxidase. J. Food Biochem. 19:161–173.

    Article  CAS  Google Scholar 

  • Bernays, E., and Graham, M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892.

    Article  Google Scholar 

  • Bi, J. L., and Felton, G. W. 1995. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 21:1511–1530.

    Article  CAS  Google Scholar 

  • Bi, J. L., Murphy, J. B., and Felton, G. W. 1997a. Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J. Chem. Ecol. 23: 97–117.

    Article  CAS  Google Scholar 

  • Bi, J. L., Felton, G. W., Murphy, J. B., Howles, P. A., Dixon, R. A., and Lamb, C. J. 1997b. Do plant phenolics confer resistance to specialist and generalist insect herbivores? J. Agric. Food Chem. 45:4500–4504.

    Article  CAS  Google Scholar 

  • Bi, J. L., Murphy, J. B., and Felton, G. W. 1997c. Does salicylic acid act as a signal in cotton for induced resistance to Helicoverpa zea? J. Chem. Ecol. 23:1805–1818

    Article  CAS  Google Scholar 

  • Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Broadway, R. M., and Duffey, S. S. 1986. The effect of dietary-protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol. 32:673–680.

    Article  CAS  Google Scholar 

  • Candy, D. 1979. Glucose oxidase and other enzymes of hydrogen peroxide metabolism from Schistocerca americana gregaria. Insect Biochem. 9:661–665.

    Article  CAS  Google Scholar 

  • Covell, C. 1984. A Field Guide to the Moths of Eastern North America. Houghton Mifflin, Boston. 496 p.

    Google Scholar 

  • Delphia, C. M., Mescher, M. C., Felton, G. W., and De Moraes, C. M. 2006. The role of insect-derived cues in eliciting indirect plant defenses in tobacco, Nicotiana tabacum. Plant Sign. Behav. 1:243–250.

    Google Scholar 

  • Diezel, C., Von Dahl, C., Gaquerel, E., and Baldwin, I. T. 2009. Different lepidopteran elicitors account for crosstalk in herbivory-induced phytohormone signaling. Plant Physiol. 150:1576–1586.

    Article  PubMed  CAS  Google Scholar 

  • Dussourd, D. E. 2009. Do canal-cutting behaviors facilitate host-range expansion by insect herbivores? Biol. J. Linn. Soc. 96:715–731.

    Article  Google Scholar 

  • Dyer, L. A. 1995. Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidoptera larvae. Ecology 76:1483–1496.

    Article  Google Scholar 

  • Eichenseer, H., Mathews, M. C., Bi, J. L., Murphy, J. B., and Felton, G. W. 1999. Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Arch. Insect Biochem. Physiol. 42:99–109.

    Article  PubMed  CAS  Google Scholar 

  • Felton, G. W. 2008. Caterpillar secretions and induced plant responses, Ch. 18, pp. 369–387, in A. Schaller (ed.). Induced Plant Resistance to Herbivory. Springer Science, Berlin.

    Chapter  Google Scholar 

  • Felton, G. W., Duffey, S. S. 1991. Protective action of midgut catalase in lepidopteran larvae against oxidative plant defenses. J. Chem. Ecol. 17:1715–1732.

    Article  CAS  Google Scholar 

  • Felton, G. W., and Eichenseer, H. 1999. Herbivore saliva and its effects on plant defense against herbivores and pathogens, pp. 19–36, in A. A. Agrawal, S. Tuzun, and E. Bent (eds.). Induced Plant Defenses Against Pathogens and Herbivores.: APS, St. Paul.

    Google Scholar 

  • Felton, G. W., Donato, K., Delvecchio, R. J., and Duffey, S. S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15:2667–2694.

    Article  CAS  Google Scholar 

  • Felton, G. W., Bi, J. L., Summers, C. B., Mueller, A. J., Duffey, S. S. 1994. Potential role of lipoxygenases in defense against insect herbivory. J. Chem. Ecol. 20:651–666.

    Article  CAS  Google Scholar 

  • Felton, G. W., Korth. K. L., Bi, J. L., Wesley, S. V., Huhman, D. V., Mathews, M. C., Murphy. J. B., Lamb, C., and Dixon, R. A. 1999. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr. Biol. 9:317–320.

    Article  PubMed  CAS  Google Scholar 

  • Futuyma, D. J., and Moreno, G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–233.

    Article  Google Scholar 

  • Harmel, N., Letocart, E., Cherqui, A., Giordanengo, P., Mazzucchelli, G., Guillonneau, F., De Pauw, E., Haubruge, E., and Francis, F. 2008. Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol. Biol. 17:165–174.

    Article  PubMed  CAS  Google Scholar 

  • Howe, G. A., and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.

    Article  PubMed  CAS  Google Scholar 

  • Iida, K., Cox-Foster, D. L., Yang, X. L, Ko, W. Y., and Cavener, D. R. 2007. Expansion and evolution of insect GMC oxidoreductases. BMC Evol. Biol.7:75.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. S., and Barbehenn, R. V. 2000. Oxygen levels in the gut lumens of herbivorous insects. J. Insect Physiol. 46:897–903.

    Article  PubMed  CAS  Google Scholar 

  • Karban, R., and Agrawal, A. A. 2002. Herbivore offense. Annu. Rev. Ecol. Syst. 33:641–664.

    Article  Google Scholar 

  • Kataria, H. R., Wilmsmeier, B., and Buchenauer, H. 1997. Efficacy of resistance inducers, free-radical scavengers and an antagonistic strain of Pseudomonas fluorescens for control of Rhizoctonia solani AG-4 in bean and cucumber. Plant Pathol. 46:897–909.

    Article  CAS  Google Scholar 

  • Lenz, C. J, Kang, J.S., Rice, W. C., Mcintosh, A. H., Chippendale, G. M., and Schubert, K. R. 1991. Digestive proteinases of larvae of the corn earworm, Heliothis zea—characterization, distribution, and dietary relationships. Arch. Insect Biochem. Physiol. 16:201–212.

    Article  PubMed  CAS  Google Scholar 

  • Leskovac, V., Trivic, S., Wohlfahrt, G., Kandrac, J., and Pericin, D. 2005. Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int. J. Biochem.Cell Biol. 37:731–750.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. K., Feng, M., Zhang, Z. H., and Pan, Y. H. 2008. Identification of the proteome complement of hypopharyngeal glands from two strains of honeybees (Apis mellifera). Apidologie 39:199–214.

    Article  CAS  Google Scholar 

  • Liu, F., Cui, L., Cox-Foster, D., and Felton, G. W. 2004. Characterization of a salivary lysozyme in larval Helicoverpa zea. J. Chem. Ecol. 30:2439–2457.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Caballero, M. E., Martinez-Alvarez, O, Gomez-Guillen, M.C., and Montero, P. 2006. Effect of natural compounds alternative to commercial antimelanosics on polyphenol oxidase activity and microbial growth in cultured prawns (Marsupenaeus tiger) during chilled storage. Eur. Food Res. Technol. 223:7–15.

    Article  CAS  Google Scholar 

  • Mao, W., Schuler, M. A., and Berenbaum, M. R. 2007. Cytochrome P450s in Papillio multicaudatus and the transition from oligophagy to polyphagy in the Papilionidae. Insect Mol. Biol. 16:481–490.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, M. C, Summers, C. B., and Felton, G. W. 1997. Ascorbate peroxidase: A novel antioxidant enzyme in insects. Arch. Insect Biochem. Physiol. 34:57–68.

    Article  CAS  Google Scholar 

  • Merkx-Jacques, M., and Bede, J. C. 2004. Caterpillar salivary enzymes: “eliciting” a response. Phytoprotection 85:33–37.

    Google Scholar 

  • Merkx-Jacques, M., and Bede, J. C. 2005. Influence of diet on the larval beet armyworm, Spodoptera exigua, glucose oxidase activity. J. Insect Sci. 5:48.

    PubMed  Google Scholar 

  • Musser, R. O., Hum-Musser, S. M., Eichenseer, H., Peiffer, M., Ervin, G., Murphy, J. B., and Felton, G. W. 2002. Herbivory: Caterpillar saliva beats plant defences—A new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416:599–600.

    Article  PubMed  CAS  Google Scholar 

  • Musser, R. O., Cipollini, D. F., Hum-Musser, S. M., Williams, S.A., Brown, J. K., and Felton, G. W. 2005a. Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch. Insect Biochem. Physiol. 58:128–137.

    Article  PubMed  CAS  Google Scholar 

  • Musser, R. O., Kwon, H. S., Williams, S. A., White, C. J., Romano, M. A., Holt, S. M., Bradbury, S., Brown, J. K., and Felton, G. W. 2005b. Evidence that caterpillar labial saliva suppresses infectivity of potential bacterial pathogens. Arch. Insect Biochem. Physiol. 58:138–144.

    Article  PubMed  CAS  Google Scholar 

  • Musser, R. O., Farmer, E., Peiffer, M., Williams, S., and Felton, G. W. 2006. Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect plant interactions. J. Chem. Ecol. 32:981–992.

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cardenas, M., and Ryan, C. A. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A 96:6553–6557.

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cardenas, M. L., Narvaez-Vasquez, J., and Ryan, C. A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191.

    Article  PubMed  CAS  Google Scholar 

  • Peiffer, M., and Felton, G. W. 2005. The host plant as a factor in the synthesis and secretion of salivary glucose oxidase in larval Helicoverpa zea. Arch. Insect Biochem. Physiol. 58:106–113.

    Article  PubMed  CAS  Google Scholar 

  • Peiffer, M., and Felton, G. W. 2009. Do caterpillars secrete “oral secretions”? J. Chem. Ecol. 35:326–335.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, A. 1962. Larvae of Insects: An Introduction to Neartic Species, Part 1. Lepidoptera and Plant Infesting Hymenoptera.: Alvah Peterson, Columbus. 315 p.

    Google Scholar 

  • Powell, J., and Opler, P. A. 2009. Moths of Western North America. University of California Press, Berkeley. 536 p.

    Google Scholar 

  • Scott, J. 1986. The Butterflies of North America: A Natural History and Field Guide. Stanford University Press, Stanford. 583 p.

    Google Scholar 

  • Stehr, F. W. 1987. Order Lepidoptera, pp. 288–754, in F. W. Stehr (ed.). Immature Insects. Kendall Hunt, Dubuque.

    Google Scholar 

  • Stout, M. J., Fidantsef, A. L., Duffey, S. S., and Bostock, R. M. 1999. Signal interactions in pathogen and insect attack: Systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54: 115–130

    Article  CAS  Google Scholar 

  • Valenzuela, J. G., Francischetti, I. M. B., Pham, V. M., Garfield, M. K., and Ribeiro, J. M. C. 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol. 33:717–732.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, D. L. 2005. Caterpillars of Eastern North America. Princeton University Press, Princeton. 512 p.

    Google Scholar 

  • Weech, M. H., Chapleau, M., Pan, L., Ide, C., and Bede, J. C. 2008. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway. J. Exp. Bot. 59:2437–2448.

    Article  PubMed  CAS  Google Scholar 

  • Wong, C. M, Wong, K. H., and Chen, X. D. 2008. Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol. 78:927–938.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. L. and Cox-Foster, D. L. 2005. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. U. S. A. 102:7470–7475.

    Article  PubMed  CAS  Google Scholar 

  • Yong-Hong, H., David, W. M., Leung, L. K, and Wang, C. Z. 2008. Diet factors responsible for the change of the glucose oxidase activity in labial salivary glands of Helicoverpa armigera. Arch. Insect Biochem. Physiol. 68:113–121.

    Article  CAS  Google Scholar 

  • Zong N. and Wang C. Z. 2004. Induction of nicotine in tobacco by herbivory and its relation to glucose oxidase activity in the labial gland of three noctuid caterpillars. Chin. Sci. Bull. 49:1596–1601.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R.V. Barbehenn, M.C. Buxton, L. Day, K.H. Haynes, B. Lewis, G. Musick, B. Oppert, D.C. Steinkraus, A.M. Simmons, and S.Y. Young, A. Zangerl for supplying caterpillars. We received financial aid from the Theodore Roosevelt Memorial Fund of the American Museum of Natural History, National Science Foundation, USDA-NRI 2005–35607-15242 and USDA-AFRI 2010-65105-20639.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Felton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichenseer, H., Mathews, M.C., Powell, J.S. et al. Survey of a Salivary Effector in Caterpillars: Glucose Oxidase Variation and Correlation with Host Range. J Chem Ecol 36, 885–897 (2010). https://doi.org/10.1007/s10886-010-9830-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9830-2

Key Words

Navigation