Skip to main content
Log in

Virulent Hessian Fly Larvae Manipulate the Free Amino Acid Content of Host Wheat Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Gall-forming insects induce host plants to form specialized structures (galls) that provide immature life stages of the insect access to host plant nutrients and protection from natural enemies. Feeding by larvae of the Hessian fly (Mayetiola destructor Say) causes susceptible host wheat plants to produce a gall-like nutritive tissue that supports larval growth and development. To determine if changes in host plant free amino acid levels are associated with virulent Biotype L Hessian fly larval feeding, we quantified free amino acid levels in crown tissues of susceptible Newton wheat plants 1, 4, and 7 days after Hessian fly egg hatch. Hessian fly-infested susceptible plants were more responsive than resistant plants or uninfested controls, showing higher concentrations of alanine, glutamic acid, glycine, phenylalanine, proline, and serine 4 days after egg hatch. This 4-day post-hatch time point corresponds to the maturation of nutritive tissue cells in susceptible plants and the onset of rapid larval growth. By 7 days after egg hatch, when virulent second instars are actively feeding on the contents of nutritive tissue cells, the aromatic amino acids phenylalanine and tyrosine were more abundant compared to uninfested controls, but the levels of other free amino acids were no longer elevated. Changes in free amino acid abundance described in this report were associated with increased levels of mRNA encoded by wheat genes involved in amino acid synthesis and transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Behmer, S. T., and Joern, A. 1994. The influence of proline on diet selection: sex-specific feeding preferences by the grasshoppers Ageneotettix deorum and Phoetaliotes nebrascensis (Orthoptera: Acrididae). Oecologia 98:76–82.

    Article  Google Scholar 

  • Bronner, R. 1992. The role of nutritive cells in the nutrition of cynipids and cecidomyiids, pp. 118–140, in J. D. Shorthouse, and O. Rohfritsch (eds.). Biology of Insect-Induced Galls Oxford University Press, Oxford.

    Google Scholar 

  • Bursell, E. 1981. The role of proline in energy metabolism, pp. 135–154, in G. H. Downer (ed.). Energy Metabolism in Insects Plenum Press, New York.

    Google Scholar 

  • Carter, C., Shafir, S., Yehonatan, L., Palmer, R. G., and Thornburg, R. 2006. A novel role for proline in plant floral nectars. Naturwissenschaften 93:72–79.

    Article  PubMed  CAS  Google Scholar 

  • Cartwright, W. B., Caldwell, R. M., and Compton, L. E. 1959. Responses of resistant and susceptible wheats to Hessian fly attack. Agron. J. 51:529–531.

    Google Scholar 

  • Caspi, R., Foerster, H., Fulcher, C. A., Hopkinson, R., Ingraham, J., Kaipa, P., Krummenacker, M., Paley, S., Pick, J., Rhee, S. Y., Tissier, C., Zhang, P., and Karp, P. D. 2006. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nuc. Acids Res. 34:D511–D516(database issue).

    Article  CAS  Google Scholar 

  • Dindo, M. L., Grenier, S., Sighinolfi, L., and Baronio, P. 2006. Biological and biochemical differences between in vitro- and in vivo-reared Exorista larvarum. Entomol. Exp. Appl. 120:167–174.

    Article  CAS  Google Scholar 

  • Eleftherianos, I., Vamvatsikos, P., Ward, D., and Gravanis, F. 2006. Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. J. Appl. Entomol. 130:15–19.

    Article  Google Scholar 

  • Flor, H. H. 1955. Host–parasite interaction in flax rust—its genetics and other implications. Phytopathology 45:680–685.

    Google Scholar 

  • Gäde, G., and Auerswald, L. 2002. Beetle’s choice—proline for energy output: control by AKHs. Comp. Biochem. Physiol. B 132:117–129.

    Article  PubMed  Google Scholar 

  • Giovanini, M. P., Puthoff, D. P., Nemacheck, J. A., Mittapalli, O., Saltzmann, K. D., Ohm, H. W., Shukle, R. H., and Williams, C. E. 2006. Gene-for-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol. Plant-Microbe Interact 19:1023–1033.

    Article  PubMed  CAS  Google Scholar 

  • Giovanini, M. P., Saltzmann, K. D., Puthoff, D. P., Gonzalo, M., Ohm, H. W., and Williams, C. E. 2007. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol. Plant Pathol 8:69–82.

    Article  CAS  Google Scholar 

  • Gruys, K. J., and Sikorski, J. A. 1999. Inhibitors of tryptophan, phenylalanine, and tyrosine biosynthesis as herbicides, pp. 357–384, in B. K. Singh (ed.). Plant Amino Acids: Biochemistry and Biotechnology. New York: Marcel Dekker.

  • Hare, P. D., and Cress, W. A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21:79–102.

    Article  CAS  Google Scholar 

  • Harris, M. O., Stuart, J. J., Mohan, M., Nair, S., Lamb, R. J., and Rohfritsch, O. 2003. Grasses and gall midges: plant defense and insect adaptation. Annu. Rev. Entomol. 48:549–577.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. O., Freeman, T. P., Rohfritsch, O., Anderson, K. G., Payne, S. A., and Moore, J. A. 2006. Virulent Hessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible interactions with wheat. Ann. Entomol. Soc. Am. 99:305–316.

    Article  Google Scholar 

  • Hatchett, J. H., and Gallun, R. L. 1970. Genetics of the ability of the Hessian fly, Mayetiola destructor, to survive on wheat having different genes for resistance. Ann. Entomol. Soc. Am. 63:1400–1407.

    Google Scholar 

  • Heady, S. E., Lambert, R. G., and Covell, C. V. Jr. 1982. Determination of free amino acids in larval insect and gall tissues of the goldenrod, Solidago canadensis L. Comp. Biochem. Physiol. B 73:641–644.

    Article  Google Scholar 

  • Kaloshian, I. 2004. Gene-for-gene disease resistance: Bridging insect pest and pathogen defense. J. Chem. Ecol. 30:2419–2438.

    Article  PubMed  CAS  Google Scholar 

  • Lam, H.-M., Wong, P., Chan, H.-K., Yam, K.-M., Chen, L., Chow, C.-M., and Coruzzi, G. M. 2003. Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiol. 132:926–935.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Bai, J., Huang, L., Zhu, L., Liu, X., Weng, N., Reese, J. C., Harris, M., Stuart, J. J., and Chen, M.-S. 2007. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33:2171–2194.

    Article  PubMed  CAS  Google Scholar 

  • Macchi, F. D., Shen, F. J., Keck, R. G., and Harris, R. J. 2000. Amino acid analysis, using postcolumn ninhydrin detection, in a biotechnology laboratory, pp. 9–30, in C. Cooper, N. Packer, and K. Williams (eds.). Methods in Molecular Biology, Vol. 159: Amino Acid Analysis Protocols Humana Press, Totawa, NJ.

    Chapter  Google Scholar 

  • McColloch, J. W. 1923. The Hessian fly in Kansas. Kans. Agr. Exp. Sta. Tech. Bul. 11:96.

    Google Scholar 

  • Meon, S., Fisher, J. M., and Wallace, H. R. 1978. Changes in free proline following infection of plants with either Meloidogyne javanica or Agrobacterium tumefaciens. Physiol. Plant Pathol. 12:251–256.

    Article  CAS  Google Scholar 

  • Ozols, J. 1990. Amino acid analysispp. 587–601, in J. N. Abelson, M. I. Simon, and M. P. Deutscher (eds.). Methods in Enzymology, Vol. 182: Guide to Protein Purification Academic Press, San Diego.

    Chapter  Google Scholar 

  • Patterson, F. L., Maas, F. B. III, Foster, J. E., Ratcliffe, R. H., Cambron, S. E., Safranski, G., Taylor, P. L., and Ohm, H. W. 1994. Registration of eight Hessian fly resistant common winter wheat germplasm lines (Carol, Erin, Flynn, Iris, Joy, Karen, Lola, and Molly). Crop Sci. 34:315–316.

    Google Scholar 

  • Puthoff, D. P., Sardesai, N., Subramanyam, S., Nemacheck, J. A., and Williams, C. E. 2005. Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feeding. Mol. Plant Pathol. 6:411–423.

    Article  CAS  Google Scholar 

  • Rhodes, D., Verslues, P. E., and Sharp, R. E. 1999. Role of amino acids in abiotic stress resistance, pp. 319–356, in B. K. Singh (ed.). Plant Amino Acids: Biochemistry and Biotechnology Marcel Dekker, New York.

    Google Scholar 

  • Robinson, R. J., Miller, B. S., Miller, H. L., Mussman, H. C., Johnson, J. A., and Jones, E. 1960. Chloroplast number in leaves of normal wheat plants and those infested with Hessian fly or treated with maleic hydrazine. J. Econom. Entomol. 53:560–566.

    CAS  Google Scholar 

  • Rossomando, E. F. 1990. Ion-Exchange Chromatography, pp. 309–316, in J. N. Abelson, M. I. Simon, and M. P. Deutscher (eds.). Methods in Enzymology, Vol. 182: Guide to Protein Purification Academic Press, San Diego.

    Chapter  Google Scholar 

  • Sacktor, B., and Childress, C. C. 1967. Metabolism of proline in insect flight muscle and its significance in stimulating the oxidation of pyruvate. Arch. Biochem. Biophys. 120:583–588.

    Article  CAS  Google Scholar 

  • Sardesai, N., Subramanyam, S., Nemacheck, J., and Williams, C. W. 2005. Modulation of defense-response gene expression in wheat during Hessian fly larval feeding. J. Plant Interact. 1:39–50.

    Article  CAS  Google Scholar 

  • Sandström, J., Telang, A., and Moran, N. A. 2000. Nutritional enhancement of host plants by aphids – a comparison of three aphid species on grasses. J. Insect Physiol. 46:33–40.

    Article  PubMed  Google Scholar 

  • Subramanyam, S., Sardesai, N., Puthoff, D., Meyer, J. M., Nemacheck, J. A., Gonzalo, M., and Williams, C. W. 2006. Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci. 170:90–103.

    Article  CAS  Google Scholar 

  • Subramanyam, S., Smith, D. F., Clemens, J. C., Webb, M. A., Sardesai, N., and Williams, C. W. 2008. Hessian fly larvae induce production of HFR-1, a high mannose N-glycan-specific wheat lectin. Plant Physiol. 147, July 2008.

  • Telang, A., Sandström, J., Dyreson, E., and Moran, N. A. 1999. Feeding damage by Diuraphis noxia results in nutritionally enhanced phloem diet. Entomol. Exp. Appl. 91:403–412.

    Article  Google Scholar 

  • Tooker, J. F., and De Moraes, C. M. 2007. Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defenses. Ecol. Entomol. 32:153–161.

    Google Scholar 

  • Verma, D. P. S., and Zhang, C.-S. 1999. Regulation of proline and arginine biosynthesis in plants, pp. 249–265, in B. K. Singh (ed.). Plant Amino Acids: Biochemistry and Biotechnology Marcel Dekker, New York.

    Google Scholar 

  • Zhu, L., Liu, X., Liu, X., Jeannotte, R., Reese, J. C., Harris, M., Stuart, J. J., and Chen, M.-S. 2008. Hessian fly (Mayetiola destructor) attack causes a dramatic shift in carbon and nitrogen metabolism in wheat. Mol. Plant-Microbe Interact. 21:70–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is a joint contribution by the USDA Agricultural Research Service and Purdue University, was supported by USDA CRIS number 3602-22000-014-00D and is Purdue University agricultural experiment station journal article number 2007-18245. M. P. Giovanini received a research fellowship from the CAPES program (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) at the Ministry of Education of Brazil. The authors thank Dr. Herbert Ohm for providing Newton and H9-Iris wheat seeds, Dr. Subhashree Subramanyam, Jill Nemacheck, and Stephen Baluch for critical reading of the manuscript, Sue Cambron for maintaining Hessian fly stocks, and Jill Nemacheck for assistance with Affymetrix micorarray probe set annotation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christie E. Williams.

Additional information

Use of commercial or proprietary products to the exclusion of others does not constitute endorsement by the USDA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltzmann, K.D., Giovanini, M.P., Zheng, C. et al. Virulent Hessian Fly Larvae Manipulate the Free Amino Acid Content of Host Wheat Plants. J Chem Ecol 34, 1401–1410 (2008). https://doi.org/10.1007/s10886-008-9544-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9544-x

Keywords

Navigation