Skip to main content
Log in

A novel role for proline in plant floral nectars

  • Original Article
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Plants offer metabolically rich floral nectar to attract visiting pollinators. The composition of nectar includes not only sugars, but also amino acids. We have examined the amino acid content of the nectar of ornamental tobacco and found that it is extremely rich (2 mM) in proline. Because insect pollinators preferentially utilize proline during the initial phases of insect flight and can reportedly taste proline, we determined whether honeybees showed a preference for synthetic nectars rich in proline. We therefore established an insect preference test and found that honeybees indeed prefer nectars rich in the amino acid proline. To determine whether this was a general phenomenon, we also examined the nectars of two insect-pollinated wild perennial species of soybean. These species also showed high levels of proline in their nectars demonstrating that plants often produce proline-rich floral nectar. Because insects such as honeybees prefer proline-rich nectars, we hypothesize that some plants offer proline-rich nectars as a mechanism to attract visiting pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alm J, Ohnmeiss TE, Lanza J, Vriesenga L (1990) Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84:53–57

    Article  Google Scholar 

  • Auerswald L, Schneider P, Gade G (1998) Utilisation of substrates during tethered flight with and without lift generation in the African fruit beetle Pachnoda sinuata (Cetoniinae). J Exp Biol 201:2333–2342

    PubMed  CAS  Google Scholar 

  • Baker HG (1978) Chemical aspects of the pollination biology of woody plants in the tropics. In: Tomlinson P, Zimmerman MH (eds) Tropical trees as living systems: the proceedings of the fourth Cabot Symposium, Harvard Forest, Petersham, Massachusetts, 26–30 April, 1976. Cambridge University Press, New York, pp 57–82

    Google Scholar 

  • Baker HG, Baker I (1971) Amino acids in nectar and their evolutionary significance. Nature 241:543–545

    Article  Google Scholar 

  • Baker HG, Baker I (1973) Some anthecological aspects of the evolution of nectar-producing flowers, particularly amino acid production in the nectar. In: Heywood VH (ed) Taxonomy and ecology: proceedings of an international symposium, Department of Botany, University of Reading, vol 5. Academic, London, pp 243–264

    Google Scholar 

  • Baker HG, Baker I (1975) Studies of nectar-constitution and pollinator-plant coevolution. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants: symposium V, first international congress of systematic and evolutionary biology, Boulder, Colorado, August 1973. University of Texas Press, Austin, pp 100–140

    Google Scholar 

  • Baker HG, Baker I (1981) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki MH (ed) Biochemical aspects of evolutionary biology. University of Chicago Press, Chicago, pp 131–171

    Google Scholar 

  • Balboni E (1978) A proline shuttle in insect flight muscle. Biochem Biophys Res Commun 85:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Brosemer RW, Veerabhadrappa PS (1965) Pathway of proline oxidation in insect flight muscle. Biochem Biophys Acta 110:102–112

    PubMed  CAS  Google Scholar 

  • Burquez A, Corbet SA (1991) Do flowers reabsorb nectar? Funct Ecol 5:369–379

    Article  Google Scholar 

  • Carter C, Thornburg RW (2000) Tobacco nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275:36726–36733

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Thornburg R (2004a) Tobacco nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiol 134:460–469

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Thornburg RW (2004b) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci 9:320–324

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Thornburg RW (2004c) Tobacco nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol Biol 54:415–425

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Graham R, Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol 41:207–216

    Article  PubMed  CAS  Google Scholar 

  • Crabtree B, Newsholme EA (1970) The activities of proline dehydrogenase, glutamate dehydrogenase, aspartate-oxoglutarate aminotransferase and alanine-oxoglutarate aminotransferase in some insect flight muscles. Biochem J 117:1019–1021

    PubMed  CAS  Google Scholar 

  • Deinzer ML, Thompson PA, Burgett DM, Isaacson DL (1977) Pyrrolizidine alkaloids: their occurrence in honey from tansy ragwort (Senecio jacobaea L.). Science 195:497–499

    Article  PubMed  CAS  Google Scholar 

  • Ecroyd CE, Franich RA, Kroese HW, Steward D (1995) Volatile constituents of Dactylanthus taylorii flower nectar in relation to flower pollination and browsing by animals. Phytochemistry 40:1387–1389

    Article  CAS  Google Scholar 

  • Ferreres F, Andrade P, Gil MI, Tomas Barberan FA (1996) Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Zeit Lebensmitt Untersuch Forsch 202:40–44

    Article  CAS  Google Scholar 

  • Gardener MC, Gillman MP (2001a) Analyzing variability in nectar amino acids: composition is less variable than concentration. J Chem Ecol 27:2545–2558

    Article  PubMed  CAS  Google Scholar 

  • Gardener MC, Gillman MP (2001b) The effects of soil fertilizer on amino acids in the floral nectar of corncockle, Agrostemma githago L. (Caryolhyllaceae). Oikos 92:101–106

    Article  Google Scholar 

  • Gardener MC, Gillman MP (2002) The taste of nectar—a neglected area of pollination. Oikos 98:552–557

    Article  Google Scholar 

  • Gottsberger G, Schrauwen J, Linskens HF (1984) Amino acids and sugars in nectar and their putative evolutionary significance. Plant Syst Evol 145:55–77

    Article  CAS  Google Scholar 

  • Griebel C, Hess G (1940) The vitamin C content of flower nectar of certain Labiatae. Zeit Untersuch Lebensmitt 79:168–171

    Article  CAS  Google Scholar 

  • Hansen K, Wacht S, Seebauer H, Schnuch M (1998) New aspects of chemoreception in flies. Ann NY Acad Sci 855:143–147

    Article  PubMed  CAS  Google Scholar 

  • Hrassnigg N, Leonhard B, Crailsheim K (2003) Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids 24:205–212

    PubMed  CAS  Google Scholar 

  • Inouye D, Waller G (1984) Responses of honey bees (Apis mellifera) to amino acid solutions mimicking nectars. Ecology 65:618–625

    Article  CAS  Google Scholar 

  • Jackson S, Nicolson SW (2002) Xylose as a nectar sugar: from biochemistry to ecology. Comp Biochem Physiol B 131B:613–620

    Article  CAS  Google Scholar 

  • Jouve L, Hoffmann L, Hausman JF (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant Biol (Stuttg) 6:74–80

    Article  CAS  Google Scholar 

  • Kaczorowski RL, Gardener MC, Holtsford TP (2005) Nectar traits in Nicotiana section Alatae (Solanaceae) in relation to floral traits, pollinators and mating system. Am J Bot 92:1270–1283

    Google Scholar 

  • Kim Y, Smith B (2000) Effect of an amino acid on feeding preferences and learning behavior in the honey bee, Apis mellifera. J Insect Physiol 46:793–801

    Article  PubMed  CAS  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kornaga T (1993) Genetic and biochemical characterization of a “lost” unstable flower color phenotype in interspecific crosses of Nicotiana sp. MS. Iowa State University, Ames

    Google Scholar 

  • Kornaga T, Zyzak DV, Kintinar A, Baynes J, Thornburg R (1997) Genetic and biochemical characterization of a “lost” unstable flower color phenotype in interspecific crosses of Nicotiana sp. WWW J Biol 2:8

    Google Scholar 

  • Lüttge U (1961) Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. I. Planta 56:189–212

    Article  Google Scholar 

  • Lüttge U (1962) Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. II. Planta 59:108–114

    Article  Google Scholar 

  • Micheu S, Crailsheim K, Leonhard B (2000) Importance of proline and other amino acids during honeybee flight (Apis mellifera carnica Pollmann). Amino Acids 18:157–175

    Article  PubMed  CAS  Google Scholar 

  • Mostowska I (1964) Amino acids of nectars and honeys. Zeszyty Kauk Wyzszej Szkoly Rolniczej Olsztynie 20:417–432 (Chem. Abstr. 464: No. 20529, 21966)

    Google Scholar 

  • Motulsky H, Christopoulos A (2003) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. GraphPad Software Inc., San Diego

    Google Scholar 

  • Nair A, Nagarajan S, Subramanian S (1964) Chemical compositions of nectar in Thunbergia grandiflora. Current Sci (Bangalore) 33:401

    CAS  Google Scholar 

  • Naqvi SMS, Harper A, Carter CJ, Ren G, Guirgis A, York WS, Thornburg RW (2005) Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamental tobacco plants. Isolation, cloning and characterization. Plant Physiol 139:1389–1400

    Article  PubMed  CAS  Google Scholar 

  • Njagi EN, Olembo NK, Pearson DJ (1992) Proline transport by tsetse fly Glossina morsitans flight muscle mitochondria. Comp Biochem Physiol B 102:579–584

    Article  PubMed  CAS  Google Scholar 

  • O’Brien D, Boggs CL, Fogel Ml (2003) Pollen feeding in the butterfly Heliconius charitonia: isotopic evidence for essential amino acid transfer from pollen to eggs. Proc R Soc Lond B 270:2631–2636

    Article  CAS  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Smeets K, Van Nerum K, Van Leuven F, Van Damme EJM (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302

    Article  PubMed  CAS  Google Scholar 

  • Raubenheimer D, Simpson S (1999) Integrating nutrition: a geometrical approach. Entomol Exp Appl 91:67–82

    Article  Google Scholar 

  • Rodriguez-Arce AL, Diaz N (1992) The stability of beta-carotene in mango nectar. J Agric Univ PR 76:101–102

    CAS  Google Scholar 

  • Roshchina VV, Roshchina VD (1993) The excretory function of higher plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rusterholz HP, Erhardt A (1998) Effects of elevated CO2 on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands. Oecologia 113:341–349

    Article  Google Scholar 

  • Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. Plant Cell 11:377–392

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi A, Kuwabara M (1970) The effects of amino acids on the labellar hair chemosensory cells of the fly. J Gen Physiol 56:768–782

    Article  PubMed  CAS  Google Scholar 

  • Simpson S, Raubenheimer D (1993) A multi-level analysis of feeding behaviour: the geometry of nutritional decision. Philos Trans Roy Soc B 342:381–402

    Article  Google Scholar 

  • Thornburg RW, Carter C, Powell A, Rizhsky L, Mittler R, Horner HT (2003) A major function of the tobacco floral nectary is defense against microbial attack. Plant Syst Evol 238:211–218

    Google Scholar 

  • Verbruggen N, Villarroel R, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hua XJ, May M, Van Montagu M (1996) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc Natl Acad Sci USA 93:8787–8791

    Article  PubMed  CAS  Google Scholar 

  • Vogel S (1969) Flowers offering fatty oil instead of nectar (Abstract No. 229). In: Abstracts of the papers presented at the XI International Botanical Congress, August 24–September 2, 1969 and the International Wood Chemistry Symposium, September 2–4, 1969 Seattle, WA (USA), pp 260

  • Wacht S, Lunau K, Hansen K (2000) Chemosensory control of pollen ingestion in the hoverfly Eristalis tenax by labellar taste hairs. J Comp Physiol A 186:193–203

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Croes A, Linskens H (1982) Protein synthesis in germinating pollen of petunia: Role of proline. Planta 154:199–203

    Article  CAS  Google Scholar 

  • Ziegler H (1956) Untersuchungen über die Leitung und Sekretion der Assimilate. Planta 47:447–500

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Science Foundation for funding to Robert Thornburg (NSF#IBN-0235645) and the Israel Science Foundation for funding to Sharoni Shafir (ISF#513/01) for support of this work. This is a joint contribution of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA, Project No. 3769 and the USDA-ARS, Corn Insects and Crop Genetics Research Unit, and supported by Hatch Act and State of Iowa. RGP is most grateful to Dr. A.H.D. Brown and to CSIRO Plant Industry, Canberra, Australia for maintenance of the Glycine species and for their hospitality during his sabbatical visit. The mention of a trademark or proprietary product does not constitute a guarantee or warranty of the project by Iowa State University or the USDA, and the use of the name by Iowa State University or the USDA implies no approval of the product to the exclusion of others that may also be suitable. All experiments conducted in this manuscript comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Thornburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, C., Shafir, S., Yehonatan, L. et al. A novel role for proline in plant floral nectars. Naturwissenschaften 93, 72–79 (2006). https://doi.org/10.1007/s00114-005-0062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-005-0062-1

Keywords

Navigation