Skip to main content

Advertisement

Log in

Molecular Characterization and Expression Pattern of Two Pheromone-Binding Proteins from Spodoptera litura (Fabricius)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pheromone perception is thought to be mediated by pheromone-binding proteins (PBPs) in the lymph surrounding the olfactory receptors. We cloned and characterized two PBP genes (SlitPBP1 and SlitPBP2) from the common cutworm, Spodoptera litura (F.; Lepidoptera: Noctuidae), which encode PBPs belonging to two different PBP groups. Western blot analysis of the crude antennal extracts with SexigPBP1 antibody revealed a single immunoreactive band (much stronger in male than in female) of ∼16 kDa, in agreement with the calculated values for SlitPBPs. From genomic DNA, two introns and a similar exon/intron structural pattern were identified in each PBP genes, but the introns differed in length within and between PBP genes. The expression patterns of two SlitPBP genes, with respect to tissue distribution and sex, were further investigated by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time PCR. Although the two PBP genes were expressed only in the antennae of both sexes, reflecting the antennal specificity of PBPs, the transcription levels of PBP genes differed between the sexes and the genes. The transcription levels of SlitPBP1 and SlitPBP2 in females were only 2.1% and 7.0%, respectively, relative to those in males, and the levels of PBP2 compared with PBP1 were 31.4% and 95.3% in males and females, respectively. These differential expression levels might suggest different roles played by the two SlitPBPs in the perception of sex pheromone both in males and females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham, D., Löfstedt, C., and Picimbon, J. F. 2005. Molecular characterization and evolution of pheromone binding protein genes in Agrotis moths. Insect Biochem. Mol. Biol. 35:1100–1111.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.

    PubMed  CAS  Google Scholar 

  • Bendtsen, J. D., Nielsen, H., VonHeijne, G., and Brunak, S. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340:783–795.

    Article  PubMed  Google Scholar 

  • Bette, S., Breer, H., and Krieger, J. 2002. Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence. Insect Biochem. Mol. Biol. 32:241–246.

    Article  PubMed  CAS  Google Scholar 

  • Bohbot, J., and Vogt, R. G. 2005. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol. 35:961–979.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. A. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, F. E., Vogt, R. G., Tucker, M. L., Dickens, J. C., and Mattoo, A. K. 2000. High level expression of “male specific” pheromone binding proteins (PBPs) in the antennae of female noctuid moths. Insect Biochem. Mol. Biol. 30:507–514.

    Article  PubMed  CAS  Google Scholar 

  • de Santis, F., François, M. C., Merlin, C., Pelletier, J., Maïbèche-Coisné, M., Conti, E., and Jacquin-Joly, E. 2006. Molecular cloning and in situ expression patterns of two new pheromone-binding proteins from the corn stemborer, Sesamia nonagrioides. J. Chem. Ecol. 32:1703–1717.

    Article  PubMed  Google Scholar 

  • Dong, S. L., and Du, J. W. 2002. Chemical identification and field tests of sex pheromone of beet armyworm Spodoptera exigua. Acta Phytophylacica Sin. 29:19–24.

    Google Scholar 

  • Du, G., and Prestwich, G. D. 1995. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34:8726–8732.

    Article  PubMed  CAS  Google Scholar 

  • Erwin, T. L. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleop. Bull. 36:74–75.

    Google Scholar 

  • Fan, W. M., Sheng, C. F., and Su, J. W. 2003. Electrophysiological and behavioral responses of both sexes of the cotton bollworm, Helicoverpa armigera Hübner to sex pheromones. Acta Entomologica Sinica 46:138–143.

    Google Scholar 

  • Forstner, M., Gohl, T., Breer, H., and Krieger, J. 2006. Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invert. Neurosci. 8:177–187.

    Article  Google Scholar 

  • Hansson, B. S. 1995. Olfaction in Lepidoptera. Experientia 51:1003–1027.

    Article  CAS  Google Scholar 

  • Huang, C. X., Zhu, L. M., Ni, J. P., and Chao, X. Y. 2002. A method of rearing the beet armyworm Spodoptera exigua. Entomological Knowledge 39:229–231.

    CAS  Google Scholar 

  • Klusák, V., Havlas, Z., ulisek, L., Vondrásek, J., and Svatos, A. 2003. Sexual attraction in the silkworm moth: Nature of binding of bombykol in pheromone binding protein-an ab initio study. Chem. Biol. 10:331–340.

    Article  PubMed  Google Scholar 

  • Krieger, J., Ganssle, H., Raming, K., and Breer, H. 1993. Odorant binding proteins of Heliothis virescens. Insect Biochem. Mol. Biol. 23:449–456.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, J., VonNickisch-osenegk, E., Mameli, M., Pelosi, P., and Breer, H. 1996. Binding proteins from the antennae of Bombyx mori. Insect Biochem. Mol. Biol. 26:297–307.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, J., Grosse-Wilde, E., Gohl, T., and Breer, H. 2005. Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci. 21:2167–2176.

    Article  PubMed  Google Scholar 

  • Kristensen, N. P. 1991 Phylogeny of extant hexapodspp.125–140, in CSIRO (ed.). The Insects of Australia: A Textbook for Students and Research Workers. Melbourne University Press, Melbourne, Australia.

  • Kumar S., Tamura K., and Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5:150–163.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  • LaForest, S. M., Prestwich, G. D., and Löfstedt, C. 1999. Intraspecific nucleotide variation at the pheromone binding protein locus in the turnip moth, Agrotis segetum. Insect Mol. Biol. 8:481–490.

    Article  PubMed  CAS  Google Scholar 

  • Laue, M., and Steinbrecht, R. A. 1997. Topochemistry of moth olfactory sensillae. Int. J. Insect Morphol. Embryol. 26:217–228.

    Article  Google Scholar 

  • Lautenschlager, C., Leal, W. S., and Clardy, J. 2007. Bombyx mori pheromone-binding protein binding nonpheromone ligands: Implications for pheromone recognition. Structure 15:1148–1154.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{ - \Delta \Delta C_{\text{T}} } \) method. Methods 25:402–408.

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg, H., Anderson, P., and Hansson, B. S. 1993. Physiology and morphology of pheromone specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol. 39:253–260.

    Article  CAS  Google Scholar 

  • Maїbèche-Coisné, M., Jacquin-Joly, E., Francois, M. C., and Nagnan-LeMeillourm, P. 1998. Molecular cloning of two pheromone binding proteins in the cabbage armyworm Mamestra brassicae. Insect Biochem. Mol. Biol. 28:815–818.

    Article  Google Scholar 

  • Maida, R., Krieger, J., Gebauer, T., Lange, U., and Ziegelberger, G. 2000. Three pheromone binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur. J. Biochem. 267:2899–2908.

    Article  PubMed  CAS  Google Scholar 

  • Maida, R., Ziegelberger, G., and Kaissling, K. E. 2003. Ligand binding to six recombinant pheromone binding proteins of Antheraea polyphemus and Antheraea pernyi. J. Comp. Physiol. B 173:565–573.

    Article  PubMed  CAS  Google Scholar 

  • Maida, R., Mameli, M., Müller, B., Krieger, J., and Steinbrecht, R. A. 2005. The expression pattern of four odorant-binding proteins in male and female silk moths, Bombyx mori. J. Neurocytology 34:149–163.

    Article  CAS  Google Scholar 

  • Mitchell, E. R., and Tumlinson J. H. 1994. Response of Spodoptera exigua and S. eridania (Lepidoptera: Noctuidae) males to synthetic pheromone and S. exigua females. Florida Entomol. 77:237–247.

    Article  CAS  Google Scholar 

  • Mittapalli, O., Wise, I. L., and Shukle, R. H. 2006. Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). Insect Biochem. Mol. Biol. 36:154–160.

    Article  PubMed  CAS  Google Scholar 

  • Nagnan-Le Meillour, P., Huet, J. C., Maïbeche, M., Pernollet, J. C., and Descoins, C. 1996. Purification and characterization of multiple forms of Odorant/Pheromone binding proteins in the antennae of Mamestra brassicae (Noctuidae). Insect Biochem. Mol. Biol. 26:59–67.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Sakurai, T., Nishioka, T., and Touhara, K. 2005. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642.

    Article  PubMed  CAS  Google Scholar 

  • Nemoto, H., Takahashi, K., and Kubota, A. 1980. Reduction of the population density of Spodoptera litura (F.) (Lepidoptera: Noctuidae) using a synthetic sex pheromone. I. Experiment in taro field. Jap. J. Appl. Entomol. Zool. 24:211–216.

    Google Scholar 

  • Ochieng, S. A., Anderson, P., and Hansson, B. S. 1995. Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in Spodoptera littoralis (Lepidoptera: Noctuidae). Tissue Cell 27:221–232.

    Article  PubMed  CAS  Google Scholar 

  • Pashley, D. P., and Ke, L. D. 1992. Sequence evolution in mitochondrial ribosomal and ND-1 genes in Lepidoptera: implications for phylogenetic analyses. Mol. Biol. Evol. 9:1061–1075.

    PubMed  CAS  Google Scholar 

  • Pelosi, P., Zhou, J. J., Ban, L. P., and Calvello, M. 2006. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63:1658–1676.

    Article  PubMed  CAS  Google Scholar 

  • Picimbon, J. -F., and Gadenne, C. 2002. Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem. Mol. Biol. 32:839–846.

    Article  PubMed  CAS  Google Scholar 

  • Plettner, E., Lazar, J., Prestwich, E. G., and Prestwich, G. D. 2000. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39:8953–8962.

    Article  PubMed  CAS  Google Scholar 

  • Prestwich, G. D. 1996. Proteins that smell: Pheromone recognition and signal transduction. Bioorgan. Med. Chem. 4:505–513.

    Article  CAS  Google Scholar 

  • Obertson, H. M., Martos, R., Sears, C. R., Todres, E. Z., Walden, K. K. O., and Nardi, J. B. 1999. Diversity of odorant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol. Biol. 8:501–518.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, D., Schulz, S., Priesner, E., Ziesmann, J., and Francke, W. 1998. Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. J. Comp. Physiol. A 182:153–161.

    Article  CAS  Google Scholar 

  • Srinivas, K., and Rao, P. A. 1999. Management of Spodoptera litura (F.) infesting groundnut by mating disruption technique with synthetic sex pheromone. J. Entomol. Res. 23:115–119.

    Google Scholar 

  • Steinbrecht, R. A., Laue, M., and Ziegelberger, G. 1995. Immunolocalization of pheromone-binding protein and general odorant binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell Tissue Res. 282:203–217.

    Article  CAS  Google Scholar 

  • Sun, F., Du, J. W., and Chen, T. H. 2003. The behavioral responses of Spodoptera litura (F.) males to the female sex pheromone in wind tunnel and field trapping tests. Acta Entomologica Sinica 46:126–130.

    Google Scholar 

  • Sun, F., Hu, Y. Y., and Du, J. W. 2002. The sex pheromone communication system of Spodoptera litura (Fabricius). Acta Entomological Sinica 45:404–407.

    CAS  Google Scholar 

  • Tamaki, Y., Noguchi, H., and Yushima, T. 1973. Sex pheromone of Spodoptera litura (F.) (Lepidoptera: Noctuidae): isolation, identification and synthesis. Appl. Ent. Zool. 8:200–203.

    CAS  Google Scholar 

  • Tamaki, Y., Osawa, T., Yushima, T., and Noguchi H. 1976. Sex pheromone and related compounds secreted by the virgin female of Spodoptera litura (F.). Jap. J. Appl. Ent. Zool. 20:81–86.

    CAS  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgin, D. G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid Res. 25:4876–4882.

    Article  CAS  Google Scholar 

  • Vogt, R. G., and Riddiford, L. M. 1981. Pheromone binding and inactivation by moth antennae. Nature 293:161–163.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, R. G., Rogers, M. E., Franco, M. D., and Sun, M. 2002. A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J. Exp. Biol. 205:719–744.

    PubMed  CAS  Google Scholar 

  • Wakamura, S., and Takai, M. 1995. Communication disruption for control of the beet armyworm, Spodoptera exigua (Hübner), with synthetic sex pheromone. Jap. Agric. Res. 29:125–130.

    CAS  Google Scholar 

  • Wakamura, S., Takai, M., Kozai, S., Inoue, H., Yamashita, I., Kawahara, S., and Kawamura, M. 1989. Control of the beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) using synthetic sex pheromone. I. Effect of communication disruption in Welsh onion fields. Appl. Entomol. Zool. 24:387–397.

    CAS  Google Scholar 

  • Xiu, W. M., and Dong, S. L. 2007. Molecular characterization of two pheromone binding proteins and quantitative analysis of their expression in the beet armyworm, Spodoptera exigua Hübner. J. Chem. Ecol. 33:947–961.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Jing-Jiang Zhou (Rothamsted Research, UK) and Professor Paolo Pelosi (University of Pisa, Italy) for valuable advice and comments on the manuscript. This work was supported by funds from the National Natural Science Foundation of China (grant number 30571220), Jiangsu Province Natural Science Foundation (grant number BK2004098), and Basic Research Special Foundation of the central-level scientific institute for public welfare (Agro-Environmental Protection Institute of MOA) (grant number 2007-xwm-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Lin Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiu, WM., Zhou, YZ. & Dong, SL. Molecular Characterization and Expression Pattern of Two Pheromone-Binding Proteins from Spodoptera litura (Fabricius). J Chem Ecol 34, 487–498 (2008). https://doi.org/10.1007/s10886-008-9452-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9452-0

Keywords

Navigation