Skip to main content
Log in

The expression patterns of SNMP1 and SNMP2 underline distinct functions of two CD36-related proteins in the olfactory system of the tobacco budworm Heliothis virescens

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In insects, male and female pheromone signals are detected by olfactory sensory neurons (OSNs) expressing the “sensory neuron membrane protein type 1”. SNMP1 is supposed to function as a co-receptor involved in the transfer of pheromones to adjacent pheromone receptors. In the moth Heliothis virescens, we previously found OSNs that project their dendrites into pheromone-responsive trichoid sensilla and are associated with cells containing transcripts for the HvirSNMP1-related protein HvirSNMP2. Like HvirSNMP1, HvirSNMP2 belongs to the CD36-family of two-transmembrane domain receptors and transporters for lipophilic compounds, but its role in the olfactory system is unknown. Here, we generated polyclonal anti-peptide antibodies against HvirSNMP2 as well as HvirSNMP1 and conducted an in-depth immunohistochemical analysis of their subcellular localization in the antenna of both sexes. In line with a function in pheromone detection, HvirSNMP1 was immunodetected in the somata and the dendrites of distinct OSNs in subsets of trichoid sensilla. These trichoid sensilla contained only one α-SNMP1-positive OSN in males and clusters of 2–3 labeled cells in females. In contrast, experiments with α-SNMP2-antibodies revealed a broad labeling of non-neuronal support cells (SCs) that are associated with OSNs in likely all trichoid and basiconic sensilla of the antenna with no differences between sexes. Detailed confocal microscope examinations of olfactory sensilla revealed SNMP2-like immunoreactivity close to the apical membrane of SCs and interestingly inside the sensillum. Together, these findings indicate a potential function of SNMP2 in pheromone- as well as general odorant-responsive sensilla and a role fundamentally different from SNMP1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alkhatatbeh MJ, Mhaidat NM, Enjeti AK, Lincz LF, Thorne RF (2011) The putative diabetic plasma marker, soluble CD36, is non-cleaved, non-soluble and entirely associated with microparticles. J Thromb Haemost 9:844–851

    CAS  PubMed  Google Scholar 

  • Almaas TJ, Mustaparta H (1991) Heliothis virescens: response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J Chem Ecol 17:953–972

    CAS  PubMed  Google Scholar 

  • Baker TC, Ochieng SA, Cosse AA, Lee SG, Todd JL, Quero C, Vickers NJ (2004) A comparison of responses from olfactory receptor neurons of Heliothis subflexa and Heliothis virescens to components of their sex pheromone. J Comp Physiol A 190:155–165

    CAS  Google Scholar 

  • Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293

    CAS  PubMed  Google Scholar 

  • Blankenburg S, Balfanz S, Hayashi Y, Shigenobu S, Miura T, Baumann O, Baumann A, Blenau W (2015) Cockroach GABA(B) receptor subtypes: molecular characterization, pharmacological properties and tissue distribution. Neuropharmacology 88:134–144

    CAS  PubMed  Google Scholar 

  • Fleischer J, Pregitzer P, Breer H, Krieger J (2018) Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell Mol Life Sci 75:485–508

    CAS  PubMed  Google Scholar 

  • Forstner M, Gohl T, Gondesen I, Raming K, Breer H, Krieger J (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem Senses 33:291–299

    CAS  PubMed  Google Scholar 

  • Gaillard D, Laugerette F, Darcel N, El Yassimi A, Passilly-Degrace P, Hichami A, Khan NA, Montmayeur JP, Besnard P (2008) The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 22:1458–1468

    CAS  PubMed  Google Scholar 

  • Giovannucci DR, Stephenson RS (1999) Identification and distribution of dietary precursors of the Drosophila visual pigment chromophore: analysis of carotenoids in wild type and ninaD mutants by HPLC. Vis Res 39:219–229

    CAS  PubMed  Google Scholar 

  • Gohl T, Krieger J (2006) Immunolocalization of a candidate pheromone receptor in the antenna of the male moth, Heliothis virescens. Invertebr Neurosci 6:13–21

    CAS  Google Scholar 

  • Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, Graf M, Ong H, Ulbrich MH, Masson JF, Benton R (2016) A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun 7:11866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu SH, Yang RN, Guo MB, Wang GR, Wu KM, Guo YY, Zhou JJ, Zhang YJ (2013) Molecular identification and differential expression of sensory neuron membrane proteins in the antennae of the black cutworm moth Agrotis ipsilon. J Insect Physiol 59:430–443

    CAS  PubMed  Google Scholar 

  • Ha TS, Smith DP (2009) Odorant and pheromone receptors in insects. Front Cell Neurosci 3:10

    PubMed  PubMed Central  Google Scholar 

  • Handberg A, Levin K, Hojlund K, Beck-Nielsen H (2006) Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma: a novel marker of insulin resistance. Circulation 114:1169–1176

    CAS  PubMed  Google Scholar 

  • Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711

    CAS  Google Scholar 

  • Hillier NK, Kleineidam C, Vickers NJ (2006) Physiology and glomerular projections of olfactory receptor neurons on the antenna of female Heliothis virescens (Lepidoptera: Noctuidae) responsive to behaviorally relevant odors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:199–219

    CAS  PubMed  Google Scholar 

  • Jiang X, Pregitzer P, Grosse-Wilde E, Breer H, Krieger J (2016) Identification and characterization of two “sensory neuron membrane proteins” (SNMPs) of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J Insect Sci 16:33

    PubMed  PubMed Central  Google Scholar 

  • Jimenez-Dalmaroni MJ, Xiao N, Corper AL, Verdino P, Ainge GD, Larsen DS, Painter GF, Rudd PM, Dwek RA, Hoebe K, Beutler B, Wilson IA (2009) Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2. PLoS One 4:e7411

    PubMed  PubMed Central  Google Scholar 

  • Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci U S A 105:10996–11001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keil TA (1989) Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21:139–151

    CAS  PubMed  Google Scholar 

  • Kiefer C, Sumser E, Wernet MF, Von Lintig J (2002) A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. Proc Natl Acad Sci U S A 99:10581–10586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koonen DP, Glatz JF, Bonen A, Luiken JJ (2005) Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta 1736:163–180

    CAS  PubMed  Google Scholar 

  • Krieger J, Raming K, Dewer YME, Bette S, Conzelmann S, Breer H (2002) A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur J Neurosci 16:619–628

    PubMed  Google Scholar 

  • Leal WS (2003) Proteins that make sense. In: Blomquist G, Vogt R (eds) Insect pheromone biochemistry and molecular biology. The biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, London, pp 447–476

    Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    CAS  PubMed  Google Scholar 

  • Levy E, Spahis S, Sinnett D, Peretti N, Maupas-Schwalm F, Delvin E, Lambert M, Lavoie MA (2007) Intestinal cholesterol transport proteins: an update and beyond. Curr Opin Lipidol 18:310–318

    CAS  PubMed  Google Scholar 

  • Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10:e1004600

    PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhang J, Liu Y, Wang G, Dong S (2014) Expression of SNMP1 and SNMP2 genes in antennal sensilla of Spodoptera exigua (Hubner). Arch Insect Biochem Physiol 85:114–126

    CAS  PubMed  Google Scholar 

  • Liu NY, Zhang T, Ye ZF, Li F, Dong SL (2015) Identification and characterization of candidate chemosensory gene families from Spodoptera exigua developmental transcriptomes. Int J Biol Sci 11:1036–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Chevrot M, Poirier H, Passilly-Degrace P, Niot I, Besnard P (2011) CD36 as a lipid sensor. Physiol Behav 105:33–42

    Google Scholar 

  • Montagne N, de Fouchier A, Newcomb RD, Jacquin-Joly E (2015) Advances in the identification and characterization of olfactory receptors in insects. Prog Mol Biol Transl Sci 130:55–80

    PubMed  Google Scholar 

  • Nassir F, Wilson B, Han X, Gross RW, Abumrad NA (2007) CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem 282:19493–19501

    CAS  PubMed  Google Scholar 

  • Neuhaus EM, Oberland S, Ackels T, Spehr M (2015) A CD36 expressing subset of murine olfactory neurons is involved in milk detection. Chem Senses 40:252–252

    Google Scholar 

  • Nichols Z, Vogt RG (2008) The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem Mol Biol 38:398–415

    CAS  PubMed  Google Scholar 

  • Oberland S, Ackelst T, Gaab S, Pelz T, Spehr J, Spehr M, Neuhaus EM (2015) CD36 is involved in oleic acid detection by the murine olfactory system. Front Cell Neurosci 9:366

    PubMed  PubMed Central  Google Scholar 

  • Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, Asakawa Y, Besnard P, Abumrad NA, Khan NA (2014) CD36- and GPR120-mediated Ca(2)(+) signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 146:995–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    CAS  PubMed  Google Scholar 

  • Pepino MY, Kuda O, Samovski D, Abumrad NA (2014) Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr 34:281–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pregitzer P, Greschista M, Breer H, Krieger J (2014) The sensory neurone membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system. Insect Mol Biol 23:733–742

    CAS  PubMed  Google Scholar 

  • Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272:14792–14799

    CAS  PubMed  Google Scholar 

  • Rogers ME, Krieger J, Vogt RG (2001a) Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. J Neurobiol 49:47–61

    CAS  PubMed  Google Scholar 

  • Rogers ME, Steinbrecht RA, Vogt RG (2001b) Expression of SNMP-1 in olfactory neurons and sensilla of male and female antennae of the silkmoth Antheraea polyphemus. Cell Tissue Res 303:433–446

    CAS  PubMed  Google Scholar 

  • Sanes JR, Hildebrand JG (1976) Structure and development of antennae in a moth, Manduca sexta. Dev Biol 51:280–299

    CAS  PubMed  Google Scholar 

  • Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2:1–8

    Google Scholar 

  • Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 26:229–245

    Google Scholar 

  • Steinbrecht RA, Gnatzy W (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi. I. Reconstruction of the cellular organization of the sensilla trichodea. Cell Tissue Res 235:25–34

    CAS  PubMed  Google Scholar 

  • Sun B, Salvaterra PM (1995) Characterization of nervana, a Drosophila melanogaster neuron-specific glycoprotein antigen recognized by anti-horseradish peroxidase antibodies. J Neurochem 65:434–443

    CAS  PubMed  Google Scholar 

  • Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist G, Vogt RG (eds) Insect pheromone biochemistry and molecular biology. The biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, London, pp 391–445

    Google Scholar 

  • Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, Staples J, Friedman R, Dickens JC (2009) The insect SNMP gene family. Insect Biochem Mol Biol 39:448–456

    CAS  PubMed  Google Scholar 

  • Wang T, Jiao Y, Montell C (2007) Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction. J Cell Biol 177:305–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, O'Tousa JE (2007) Cellular sites of Drosophila NinaB and NinaD activity in vitamin a metabolism. Mol Cell Neurosci 35:49–56

    PubMed  Google Scholar 

  • Zhang J, Liu Y, Walker WB, Dong SL, Wang GR (2015) Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci 22:399–408

    PubMed  Google Scholar 

  • Zielonka M, Breer H, Krieger J (2018) Molecular elements of pheromone detection in the female moth, Heliothis virescens. Insect Sci 25:389–400

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the insect rearing unit at Bayer CropScience AG Frankfurt for providing Heliothis virescens pupae. Doreen Sander is acknowledged for excellent technical assistance.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft, SPP1392 by a grant to J.K. (KR1786/4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Krieger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.06 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blankenburg, S., Cassau, S. & Krieger, J. The expression patterns of SNMP1 and SNMP2 underline distinct functions of two CD36-related proteins in the olfactory system of the tobacco budworm Heliothis virescens. Cell Tissue Res 378, 485–497 (2019). https://doi.org/10.1007/s00441-019-03066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03066-y

Keywords

Navigation